<div dir="ltr">Please find below information about an upcoming colloquium from the Center for Quantitative Modeling in Biology on an AI-driven framework for analyzing MRI tumor data.<div><br></div><div>V. Tsotras<br><div class="gmail_quote gmail_quote_container"><div dir="ltr" class="gmail_attr"><br></div><div dir="ltr" class="gmail_attr">_____________________</div><div dir="ltr"><div dir="ltr"><div><br>Colloquium<br>Interdisciplinary Center for Quantitative Modeling in Biology<br><br><a href="https://www.cityofhope.org/research/find-a-scientist/russell-rockne" target="_blank">Prof. Russel Rockne</a>, Director<br>Division of Mathematical Oncology and Computational Systems Biology<br><a href="https://www.cityofhope.org/" target="_blank">City of Hope</a><br><br>Time: <font color="#0000ff">12:30pm, November 12, 2025, Wednesday</font><br>Location: <font color="#0000ff">Skye Hall 284</font><br><br>Title: <font color="#0000ff">Mathematical modeling in cancer research: how to build, validate, and<br>apply models with biologists and clinicians</font><br><br>Abstract: The integration of machine learning with mechanistic modeling is t<br>ransforming cancer research. This lecture introduces Localized Convolutional<br>Function Regression (LCFR), a novel AI-driven framework for analyzing dynamic<br>contrast-enhanced MRI (DCE-MRI) data to noninvasively quantify interstitial fluid<br>transport in tumors. LCFR leverages weak-form regression and domain-specific<br>basis functions to estimate spatially varying coefficients of partial differential<br>equations governing advection-diffusion-reaction dynamics. This approach enables<br>simultaneous measurement of perfusion, diffusion, and interstitial fluid velocity in 3D,<br>overcoming limitations of traditional voxel-wise ODE fitting and enhancing interpretability<br>and computational efficiency. Key topics will include: The mathematical formulation<br>of LCFR and its connection to sparse identification of nonlinear dynamics (SINDy).<br>Validation across in silico, in vitro, and in vivo models, including hydrogel phantoms<br>and murine glioma. Application to clinical imaging data from glioblastoma and breast<br>cancer patients, revealing tissue-specific differences in fluid dynamics. Implications<br>for understanding tumor microenvironment, drug delivery, and treatment response.<br>This lecture will provide attendees with a conceptual and practical foundation for<br>integrating AI-based model discovery into clinical imaging workflows, offering new<br>avenues for personalized cancer modeling and predictive analytics in oncology,<br>as well as perspective on how to build, validate, and apply models with biologists<br>and clinicians.<br>________________________________________________________________________</div></div><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
</blockquote></div>
</blockquote></div>
</blockquote></div>
</blockquote></div>
</blockquote></div>
</blockquote></div>
</blockquote></div>
</blockquote></div>
</blockquote></div>
</blockquote></div></div>
</div></div></div>