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Preface

Foundation models represent a potentially transformative technology for 
progressing scientific discovery and innovation. However, their rapid adoption 
has raised questions and concerns about their reliability, validity, and reproduc-
ibility. In 2024, the Department of Energy (DOE) requested that the National 
Academies of Sciences, Engineering, and Medicine conduct a study to consider 
current foundation models’ capabilities, and future possibilities and challenges. 

The National Academies established the Committee on Foundation Models 
for Scientific Discovery and Innovation to conduct this study. The study com-
pares foundation models with more traditional computational methods, addresses 
exemplar use cases of foundation models, specifies strategic considerations, and 
outlines challenges for the development and use of foundation models. The full 
statement of the committee’s task is shown in Appendix A.

The committee met in person in March 2025 and met virtually 15 times to 
receive briefings from experts and stakeholders (for a list of presentations, see 
Appendix B), review relevant reports and technical literature, deliberate, and 
develop this report.

The committee is grateful for the support of DOE’s Office of Science, Of-
fice of Biological and Environmental Research, and National Nuclear Security 
Administration. The committee also extends its sincere thanks to the following 
National Academies’ staff for their assistance throughout the study: Blake Reich-
muth, Thơ Nguyễn, Erik Svedberg, Sam Koretsky, Jon Eisenberg, and Michelle 
Schwalbe.

 
Dona Crawford, Chair 

Committee on Foundation Models for Scientific Discovery and Innovation
October 2025
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Summary

There is significant interest in the development and application of foundation 
models for scientific discovery. Foundation models possess the capacity to gener-
ate outputs or findings and discern patterns within extensive data sets with data 
volumes that are considered overwhelming for classical modes of inquiry. Ef-
forts are under way to use these models to accelerate various aspects of scientific 
workflows (including streamlining literature reviews, planning experiments, data 
analysis, and code development) and generating novel findings and hypotheses 
that can then spur further research directions. However, significant challenges 
remain in the effective use of these models in scientific applications, including 
issues with flawed or limited training data and limited verification, validation, 
and uncertainty quantification capabilities. 

This report of the Committee on Foundation Models for Scientific Discov-
ery and Innovation explores many of these opportunities and challenges and 
describes key gaps and potential future directions. This report explores use of 
foundation models independently and cooperatively with traditional modeling, 
exemplar use cases of foundation models, and challenges associated with the 
use of foundation models. While much of this report applies broadly to the use 
of foundation models for scientific discovery, the conversations are specifically 
focused on strategic considerations and directions for the Department of Energy 
(DOE) and its unique mission.

FOUNDATION MODELS AND TRADITIONAL MODELING

The current definition of foundation models varies across communities. This 
study uses the following definition:

1
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2	 FOUNDATION MODELS FOR SCIENTIFIC DISCOVERY AND INNOVATION

Today, foundation models are large-scale neural networks trained on vast 
amounts of heterogeneous data with the capability of learning new representa-
tions via fine-tuning on additional data. They represent a shift from traditional 
artificial intelligence (AI) systems designed for specific tasks. They possess the 
capacity to generate findings and discern patterns within extensive data sets with 
data volumes that exceed by orders of magnitude the computing and storage 
capacities of traditional solvers and even previous machine learning models. 

Some of the key characteristics defining foundation models include massive 
scale, self-supervised pretraining, adaptability, emergent capabilities, ability to 
work in multiple modalities and be task agnostic, and a multipurpose architecture. 
These characteristics position foundation models as a potential paradigm shift for 
scientific research. 

Despite the emergence of foundation models, traditional modeling (large-
scale computational science solvers as well as statistical models) often retains 
critical advantages, particularly in interpretability, reliability, and strict adherence 
to physical laws. The fusion of traditional modeling approaches with foundation 
models is a promising direction.

Conclusion 2-1: Integrating traditional models with foundation models 
is proving to be increasingly powerful and has significant potential to 
advance computational findings in the physical sciences. These hybrid 
methods can be viewed as algorithmic alloys that can leverage the 
physical interpretability and structures of classical computational ap-
proaches alongside the data-driven adaptability of foundation models. 
This fusion enables the modeling of complex multiphysics, multiscale, 
and partially observed (understood) systems that challenge traditional 
approaches both computationally and mathematically.

The fusion of foundation models with traditional numerical methods repre-
sents more than a computational advance; it constitutes a paradigm shift in the 
conduct of scientific discovery. 

Recommendation 2-1: The Department of Energy (DOE) should 
invest in foundation model development, particularly in areas of 
strategic importance to DOE, including areas where DOE already 
has advantages leveraging its unique strengths in those domains. 
DOE should also prioritize the hybridization of foundation mod-
els and traditional modeling. Such hybrid modeling strategies can 
fuse the physical interpretability and robustness of classical solvers 
with the efficiency and learning capabilities of foundation models, 
particularly in multiscale, multiphysics applications where tradi-
tional approaches have limitations in capturing the heterogeneity, 
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SUMMARY	 3

complexity, and dynamics of the physical system. DOE should not, 
however, abandon its expertise in numerical and computational 
methods and should continue investing strategically in software and 
infrastructure.

Although traditional modeling remains superior today in terms of interpret-
ability and adherence to physical laws, integrating it with foundation models 
offers powerful new capabilities. These hybrid approaches enable better model-
ing of complex systems, and DOE should prioritize the use of these integrated 
methods. 

EXEMPLAR USE CASES OF FOUNDATION MODELS

In framing potential DOE efforts in foundation models, the strategic focus re-
mains a subject of debate: how best to balance the department’s broad application 
space, navigate the trade-offs between leveraging past industry advancements 
and addressing the unique national security imperatives of DOE, and ensure 
responsible stewardship of taxpayer resources. A primary concern is that DOE 
cannot compete with the head start in technology maturation and large market 
share currently held by large companies, such as Microsoft and Google, that back 
efforts with large investments (both financially and with workforce).

Conclusion 3-1: Commercial industry has driven rapid progress in 
developing large language model–based foundation models, yielding 
a robust ecosystem of tools and capabilities. As demonstrated by, for 
example, the collaboration between Los Alamos National Laboratory 
and OpenAI, DOE can leverage these industry advances and findings 
as it develops foundation models for science and conducts coordinated 
DOE-wide assessments to identify appropriate opportunities.

This raises the fundamental question of whether DOE should be competing 
at all in the foundation model space and, if it does, whether it should focus on col-
laborations with industry or focus on complementary space where DOE’s unique 
mission lies. The committee believes that DOE needs to develop these tools in-
ternally in addition to the private sector’s development because the needs of the 
government, whether for national security or continued scientific preeminence, 
will not be met by private interests. The two endeavors (private and public) do not 
compete—they complement each other. Despite the mismatch in funding com-
pared to industry leaders, DOE holds clear strategic advantages in several areas. 

Conclusion 3-2: DOE retains clear strategic advantages in five areas: 
(1) a world-class scientific workforce in computational science; (2) 
access to large-scale, science-focused, and experimental computing 

https://nap.nationalacademies.org/catalog/29212?s=z1120


Foundation Models for Scientific Discovery and Innovation: Opportunities Across the Department of Energy ...

Copyright National Academy of Sciences. All rights reserved.

4	 FOUNDATION MODELS FOR SCIENTIFIC DISCOVERY AND INNOVATION

hardware; (3) stewardship of unique experimental facilities and open 
and controlled or classified scientific data; (4) capability to tackle 
long-term, high-risk, high-reward scientific problems; and (5) access 
to unique scientific data that may not be easily reproduced and which 
can be expanded as synthetic data may be necessary for training future 
foundation models.

With DOE’s advantages and foundation model capabilities in mind, the com-
mittee directed a series of recommendations addressing the potential role DOE 
can play in their development and implementation.

Keeping humans in the loop is important for foundation models for a number 
of reasons. These include addressing accountability and oversight, error detection 
and correction, interpretability and trust, and contextual judgment. The human 
counterpart can help determine the suitability and reliability of the foundation 
model. This outlines the following conclusion and recommendation from the 
committee regarding the importance of including humans in the foundation model 
processes. 

Conclusion 3-3: While AI systems can exceed human performance in 
many ways, they can also fail in ways a human likely never would. For 
this reason, the qualification of foundation models will be necessary for 
decision making and prediction in the presence of uncertainty.

Recommendation 3-1: The Department of Energy (DOE) should 
study and develop the fusion of artificial intelligence (AI) and hu-
man capabilities. At present, AI systems handle the repetitive, man-
ual, or routine tasks, and are starting to show abilities to reason. As 
AI becomes more capable, deep analysis and strategy recommenda-
tions become feasible, but humans should maintain oversight and 
validation, particularly for qualification and other aspects of DOE’s 
mission.

Agentic AI has surged as a means of using large language models (LLMs) 
to launch external agents to explore hypotheses or improve or verify responses. 
There is a unique opportunity for DOE to explore these capabilities. Such capa-
bilities may, for example, expose automatic differentiation “hooks” in their open-
source libraries; to train foundation models, a software interface must expose 
the computational graph of a machine learning library to adjoint calculations in 
a scientific code, allowing the seamless backpropagation of gradients between 
the two codes. The majority of DOE codes are written in Fortran, C, or C++ and 
do not expose the necessary computational graph to pass adjoint information. If 
such hooks or interfaces were exposed, LLMs would be able to couple directly 
to production codes, integrating robust numerical prediction into the training 
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process. This would allow LLMs to both perform simulation and calculate loss 
function, enabling complete end-to-end training with DOE’s reliable and mature 
physics-based simulators. For example, a text prompt (e.g., “Why is the drag high 
on this vehicle?”) could directly evaluate sensitivities to components of a scien-
tific simulator (e.g., “The mesh facets of the tail fins are in a high-shear layer”) 
rather than attempting to glean answers through text in scientific reports. By a 
similar process, DOE could apply LLMs and foundation models to help operate 
user facilities, leading to autonomous “self-driving laboratories.” 

Recommendation 3-2: The Department of Energy should evaluate 
the capabilities and risks of agentic artificial intelligence (AI) sys-
tems for its core applications. In particular, the committee advocates 
exploring agentic AI for developing autonomous laboratories for 
scientific discovery, decision making, and action planning for high-
stakes applications. 
	
With the rapid development of foundation models and other AI systems, 

there is additional potential for security risks from these systems. The adversarial 
use of foundation models poses security risks in two main ways. First, attackers 
could target the model itself to subvert its function or steal intellectual property 
through methods such as Prompt Injection (jailbreaking), Data Poisoning, and 
Model Stealing. Second, adversaries could leverage foundation models as weap-
ons to accelerate traditional cybercrime, enabling the mass production of highly 
effective phishing and deepfakes, lowering the barrier to writing malicious code, 
and introducing new supply chain vulnerabilities when models are integrated 
with external systems. 

There needs to be the development of processes to verify that foundation 
models are reliable, safe, and trustworthy throughout their life cycles. Additional 
measures should also be developed to protect against adversarial applications of 
foundation models. These could be assisted by proactive cybersecurity strate-
gies such as red teaming, where real-world attacks are simulated to help identify 
and address security weaknesses. The committee therefore states the following 
recommendation. 

Recommendation 3-3: To address potential security risks arising 
from the adversarial use of foundation models, the Department of 
Energy should explore strategies for artificial intelligence assurance, 
red teaming, and development of countermeasures.

Although industry leaders may have a head start with foundation models, 
there is value for DOE to focus on areas where it holds strategic advantages. 
Using these capabilities to help develop and direct foundation models can help 
to solidify DOE’s place in foundation models for scientific discovery and innova-
tion leadership.
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STRATEGIC CONSIDERATIONS AND DIRECTIONS FOR 
THE DEPARTMENT OF ENERGY FOUNDATION MODELS

The national laboratories hold deep institutional expertise, embedded in their 
workforce, legacy data sets, and extensive experimental and modeling infrastruc-
ture. Yet the sheer scale of the DOE system, characterized by siloed specialized 
knowledge and the complexity of coordinating a large, distributed workforce, 
can be fundamentally misaligned with the speed and flexibility required for rapid 
decision making.

DOE invested early in material informatics and high-throughput experi-
mental data curation campaigns to build unique access to data sets, through the 
Material Genome Initiative and other efforts. By combining advanced foundation 
models, high-performance computing, and curated experimental data, materials 
informatics can dramatically reduce the search space for viable material substi-
tutes or processes. This is an example of a DOE effort to advance an aspect of 
computational science and how such research and development leads to important 
new capabilities.

Conclusion 4-1: Many DOE missions demand rapid analysis and deci-
sion making under urgent national security or economic constraints. 
Although the national laboratories hold deep institutional expertise—
embedded in their workforce, legacy data sets, and extensive experi-
mental and modeling infrastructure—the sheer scale of the DOE system, 
characterized by siloed specialized knowledge and the complexity of 
coordinating a large, distributed workforce, can be misaligned with the 
agility required for decisive action. Development of foundation models 
for this purpose poses a unique opportunity to address rapid analysis 
and decision making.

Recommendation 4-1: The Department of Energy should explore 
the use of foundation models to accelerate situational understanding 
by unifying dispersed, siloed, and diverse multimodal data sources 
as input to decision-making frameworks across heterogeneous 
environments.

Additionally, the needs of a DOE foundation model arguably pose more 
stringent requirements than in academic/industrial settings. For stockpile stew-
ardship, simulation of critical components has matured over decades to the point 
that simulations calibrated by extensive testing are viewed as capable of replacing 
full-scale, experiment-based design. This outlines more opportunities for DOE. 

Conclusion 4-2: DOE is uniquely positioned to shape the future of AI-
driven science. Material informatics and near-autonomous scientific 
platforms highlight the power of combining curated experimental data, 
simulation, and advanced AI to accelerate discovery. Federated comput-
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ing and facility integration extend this vision by enabling distributed use 
of DOE’s infrastructure. 

The curation and integration of specialized knowledge coupled with emerg-
ing multimodal and agentic AI approaches underscore the importance of preserv-
ing expertise, reasoning across diverse scientific data streams, and directly linking 
foundation models to DOE’s mature simulation ecosystem.

Recommendation 4-2: The Department of Energy should both mod-
ernize existing infrastructure and invest in new infrastructure to 
generate, curate, and facilitate the large data corpus necessary to 
build a scientific foundation model, including simulations to create 
data, high-throughput and/or autonomous experimental facilities, 
and facilities to host data. Additionally, they should create interfaces 
(e.g., agentic, retrieval-augmented generation tools) through which 
large foundation models may easily access these sources. A successful 
strategy will provide holistic access to multimodal or heterogeneous 
infrastructure across the entire DOE complex, mitigating the “stove-
piping” of assets between different laboratories or departments.

A strength of DOE is its ability to retain scientific talent, which should be 
reinforced with AI expertise as well. The success of any DOE-wide foundation 
model initiative depends entirely on attracting and retaining top AI talent, includ-
ing overcoming the hurdle of slow funding cycles. However, DOE currently has 
excellent infrastructure and expertise as well as well-defined, mission-driven 
research. 

Conclusion 4-3: DOE struggles to compete with the private sector for 
AI talent due to lower salaries and slow, traditional funding cycles. 
However, DOE’s unique strengths, such as its mission-driven work, 
long-term career paths, and powerful supercomputing infrastructure, 
can be leveraged to attract talent. Building a strong academic pipeline 
through closer collaboration with universities is also essential for its 
long-term success.

Recommendation 4-3: To maintain a top-tier workforce, the De-
partment of Energy (DOE) should design leadership-scale scientific 
research programs and provide staff with opportunities to rap-
idly adapt to a quickly evolving technological landscape. To attract 
early-career scientists, DOE should be perceived as the best place 
to become a leader in scientific machine learning; although industry 
may lead in large language model space, the unique access to state-
of-the-art science can attract top talent. To be competitive with 
large-scale development efforts in industry, it is important to avoid 
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fracturing of scientists’ time and attention. We recommend that 
DOE should create mechanisms by which medium through large 
teams can mount coordinated, focused efforts targeting mission-
critical developments in fundamental research into, and applica-
tions of, foundation models for science.

One of DOE’s major strengths is its data collection and generation capa-
bilities. Leaning on this strength can be beneficial to the development and use 
of foundation models for scientific discovery and innovation. To expedite this 
potential, the data generated needs to be readable and usable by both the human 
users and the foundation models. This will help enhance operational efficiency 
and productivity and boost communication and collaboration. The standardization 
of data can help make DOE data readable and usable.

Conclusion 4-4: Although DOE curates many high-value data sets of 
value for construction of foundation models, they are typically devel-
oped in an ad hoc manner with heterogeneous file formats and data 
curation strategies that currently pose a barrier to high-throughput 
processing of data. Foundation models present a unique opportunity to 
address this issue.

Recommendation 4-4: To increase the success of future foundation 
models for science, the Department of Energy should invest in large-
scale data user facilities (classified and unclassified), leveraged by 
artificial intelligence’s growing capability to interpret heterogeneous 
scientific data, similar to the successes experienced with previous 
investments in supercomputers and open-source scientific comput-
ing libraries. 

FOUNDATION MODEL CHALLENGES

Applying foundation models within DOE missions presents a multilayered 
set of scientific and operational challenges. These models, which emerged from 
success in domains such as natural language processing and vision, struggle to 
transfer directly into computational science workflows that demand physical 
fidelity, mesh-aware representations, and scalable performance across problems 
involving multiscale and multiphysics described by partial differential equations.

Verification, validation, and uncertainty quantification (VVUQ) are essen-
tial components of trustworthy scientific computing, ensuring that models are 
mathematically sound (verification), accurately represent the real-world systems 
they simulate (validation), and provide a clear understanding of uncertainties in 
their predictions (uncertainty quantification). These practices are well established 
in traditional modeling and simulation but are not yet adequately developed or 
standardized, particularly for foundation models. AI models often operate as 
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black boxes, lacking transparency in how outputs are generated or how reliable 
they are under different conditions. Establishing VVUQ standards for foundation 
models is critical to ensure that these systems can be safely and effectively used 
in scientific discovery.

Conclusion 5-1: VVUQ methods analogous to those for traditional 
computational modeling do not exist for, or map directly onto, founda-
tion models.

Conclusion 5-2: VVUQ, interpretability, and reproducibility are critical 
for establishing and maintaining trust in systems that are inherently 
complex, opaque, and increasingly deployed in high-stakes situations. 
Integration of VVUQ into foundation models would lead to increasing 
their trustworthiness, reliability, and fit for purpose, which is essential 
for future scientific discovery and innovation. 

Recommendation 5-1: The Department of Energy (DOE) should 
lead the development of verification, validation, and uncertainty 
quantification frameworks tailored to foundation models, with built-
in support for physical consistency, structured uncertainty quanti-
fication, and reproducible benchmarking in DOE-relevant settings.

There have been successes in validating model outputs with experimental 
data, as the data provide a real-world benchmark against which the models’ ac-
curacy can be determined. Without high-quality and robust experimental data, it 
is difficult to determine if a model’s predictions are valid or merely artifacts of its 
assumptions or training data. This is especially important for foundation models 
and hybrid models, which may generalize well in theory but fail under specific 
conditions or in untested regimes. Therefore, the committee states the following 
conclusion and recommendation.

Conclusion 5-3: Foundation models for science will demand more and 
different physical experiments to validate the veracity of the AI predic-
tions. Empirical grounding ensures that foundation model outputs reflect 
physical laws and domain-specific behavior. This is especially critical 
in high-stake DOE applications, where simulations alone cannot guar-
antee correctness, and where physical experiments provide the only 
definitive test of predictive validity.

Recommendation 5-2: In line with Recommendation 4-2, the De-
partment of Energy should place high priority on data collection 
efforts to support reproducible foundation model training and vali-
dation, analogous to traditional efforts in verification, validation, 
and uncertainty quantification.
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DOE is in a unique position for the development and use of foundation 
models for scientific discovery. They are leaders and have the capacity to tackle 
long-term, high-risk, high-reward scientific problems. An issue currently with 
foundation models for science is the lack of standards for development and use. 
Using these key resources, DOE can be contributing to the development and es-
tablishment of these standards for foundation models. Having concrete standards 
ensures compatibility and interoperability and improves reliability of a system. 

Recommendation 5-3: The Department of Energy should estab-
lish and enforce standardized protocols and develop benchmarks 
for training, documenting, and reproducing foundation models for 
science and should participate in defining software standards, ad-
dressing randomness, hardware variability, and data access across 
its laboratories and high-performance computing infrastructure.

Although many of the technical challenges associated with foundation mod-
els can be addressed through internal research and development, deployment at 
DOE scale will increasingly involve external partnerships. Collaboration with 
industry introduces more constraints. Proprietary model weights, restricted data 
access, and closed-source infrastructure often prevent rigorous VVUQ and re-
producibility practices, especially when security, transparency, or auditability is 
required. Collaboration with industry introduces more constraints. Proprietary 
model weights, restricted data access, and closed-source infrastructure often 
prevent rigorous VVUQ and reproducibility practices, especially when security, 
transparency, or auditability is required. These collaborations demand careful 
planning and coordination to bridge institutional differences in mission, priorities, 
and operational practices, particularly in areas such as contracting mechanisms, 
responsible AI standards, intellectual property frameworks, data-sharing proto-
cols, and alignment on VVUQ expectations. 

Conclusion 5-4: Partnering of DOE laboratories with industry on foun-
dation models will require deliberate effort, including flexible contract-
ing mechanisms, clear intellectual property agreements, data-sharing 
processes, aligning on VVUQ approaches, responsible AI practices, 
and a shared understanding of respective missions, objectives, and 
constraints. 

Recommendation 5-4: The Department of Energy should deliber-
ately pursue partnerships with industry and academia to address 
national mission goals, governed by flexible contracts, responsible 
artificial intelligence standards, and alignment on reproducibility, 
verification, validation, and uncertainty quantification approaches 
and data sharing.
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Introduction

This chapter presents the rationale for the study, including any directive that 
led to its initiation. The statement of task for the study, the committee’s inter-
pretation of elements of the statement of task, and the structure of the report are 
also described. The chapter also points to potential reasons why the Department 
of Energy (DOE) is furthering the development and use of artificial intelligence 
(AI) models, such as foundation models. The study charge and the committee’s 
interpretation of its key elements are then discussed, followed by a review of the 
report’s structure in fulfillment of the study charge. 

SIGNIFICANCE OF FOUNDATION MODELS

Foundation models are typically large-scale neural networks trained on vast 
amounts of heterogeneous data with the capability of learning new representa-
tions via fine-tuning on additional data. They represent a departure from tradi-
tional AI systems designed for specific tasks. They can be standalone systems or 
can be used as a “base” for many other applications (see Figure 1-1). Today, the 
most prominent foundation models are large language models (LLMs) trained 
on vast amounts of text data to process and generate human-like responses, 
answer follow-up questions, and complete other language-related tasks. There 
is widespread enthusiasm about the use of foundation models, especially LLMs 
and approaches that build on LLMs, to advance scientific research (Lee 2024).

When these models are used in scientific research, they encounter chal-
lenges including limited domain-specific knowledge, interpretability of the re-
sults, sparse training data, integration with experimental data, lack of causal 
understanding, and the evolving nature of scientific knowledge.

11
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These challenges provide opportunities for research across all areas of DOE. 
The pursuit of these opportunities is an important endeavor as the private sector 
is presently leading the race for the development of state-of-the-art foundation 
models. The landscape of this race is in constant flux, and the leaders at any 
time will reap major rewards and may determine the direction of future scientific 
endeavors.

The DOE national laboratories are special-purpose entities referred to as 
federally funded research and development centers (FFRDCs). FFRDCs provide 
the government with a dedicated, objective, and highly specialized technical 
and analytical capability that is essential for addressing long-term, complex 
national challenges. FFRDCs cannot manufacture products or compete directly 
with industry and have no commercial or shareholder interests, ensuring that 
their advice, analysis, and research are unbiased, allowing them to act as “honest 
brokers” and trusted advisors. They attract, develop, and retain unique scientific 
expertise that combines world-class research and entrepreneurial know-how to 
support the mission of the agencies they serve. By assembling teams of experts 
from various fields, FFRDCs address multifaceted technical challenges that often 
require high-risk experiments and large facilities, such as supercomputers or light 
sources. FFRDCs play a crucial role in maintaining and advancing the nation’s 

FIGURE 1-1  A foundation model centralizes the information from all the data from 
various modalities and can then be adapted to a wide range of downstream tasks. 
SOURCE: Bommasani et al. 2021. CC BY 4.0.
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scientific and technical expertise in critical areas and facilitate technology transfer 
to the private sector. As such, the DOE national laboratories have an important 
role to play in advancing AI technologies, particularly AI foundation models for 
scientific discovery and innovation.

AI, particularly with the emergence of foundation models, is a transformative 
force poised to redefine future economies, national security, scientific discovery, 
global power dynamics, and daily life. Given this immense impact, maintaining 
U.S. leadership in AI is imperative, necessitating an understanding of the global 
competitive landscape, particularly coming from China.

China has strategically prioritized its development of AI, aiming to become a 
world leader in the field by 2030. This goal was outlined in its “Next-Generation 
Artificial Intelligence Development Plan,” which was released in July 2017. 
Their ambition is supported by significant government investment in AI theory, 
technology, and application. Chinese AI firms have expanded their influence 
by freely distributing their models for the public to use, download, and modify, 
which makes them more accessible to researchers and developers around the 
world. In terms of quantifiable metrics, China is ahead of the United States: it 
significantly outpaced the United States in AI patent filings in 2022, possesses a 
leading advantage in the sheer volume of data, and leads the United States in the 
quantity of AI scientific papers. China has cultivated a robust domestic ecosys-
tem, boasting abundant science, technology, engineering, and mathematics talent, 
resilient supply chains, and impressive manufacturing capabilities (Omaar 2024).

The nation that shapes the LLMs powering tomorrow’s applications and 
services will wield great influence not only over the norms and values embed-
ded in them but also over the critical semiconductor ecosystem that underpins 
AI computing. The fact that both China and the United States believe that these 
technologies could also provide military advantages only heightens the impor-
tance of achieving and maintaining long-term AI leadership.

Although the report will be examining use of foundation models for scientific 
discovery and innovation specifically for DOE, the development and use of these 
tools will benefit the general scientific community. The report will examine how 
foundation models can help drive progress in complex systems—such as digital 
twins—and unlocks new findings in areas vital to American competitiveness, 
including materials science, nuclear science, and public health.

STUDY APPROACH

The study was supported by DOE’s Office of Science, National Nuclear Se-
curity Administration, and Biological and Environmental Research program. In 
collaboration with the National Academies of Sciences, Engineering, and Medi-
cine, these DOE offices developed the study’s statement of task (see Box 1-1). 
The National Academies appointed a committee of 11 members with expertise 
in mathematics, statistics, computer science, data science, algorithms and scal-
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ability, energy consumption and computing, scientific applications, model trust-
worthiness, and DOE and laboratory experience. Committee biographies are 
provided in Appendix D.

The committee held several information-gathering meetings in support of 
this study, including one in-person public meeting (March 11–12, 2025) where 
the committee was presented with material from industry scientists and AI lead-
ers from DOE laboratories. The other information-gathering sessions (February 
11, May 6, and May 20, 2025) were virtual where presenters discussed DOE’s 
interest in AI for science, learning models from data, and agentic AI. 

Report Organization

This report was written with the intention of informing the scientific and 
research community, academia, pertinent government agencies, AI practitioners, 
and those in relevant industries about open needs when developing and using 
foundation models. The study takes an objective approach to understanding the 
field of foundation models specifically for scientific discovery and innovation 
and the potential opportunities that their use and development can bring to DOE. 
The report begins with a discussion on the use of foundation models with and 
without traditional modeling techniques1 (Chapter 2). Chapter 3 explores the suc-

1 For this report, traditional modeling refers to large-scale computational science solvers as well 
as statistical models.

BOX 1-1 
Statement of Task

A National Academies of Sciences, Engineering, and Medicine consensus 
study will assess the state of the art in foundation models and their use across 
science research domains relevant to the Department of Energy mission. The 
study will address the following questions:

• 	 What are some exemplar use cases where foundation models could impact 
scientific discovery and innovation? 

• 	 How can foundation models be used in conjunction with traditional model-
ing, computational, and data science approaches?

• 	 How can challenges such as verification, validation, uncertainty quantifica-
tion, and reproducibility best be addressed to advance trustworthy founda-
tion models?

• 	 What are priority research areas for investments to advance the develop-
ment and use of foundation models in scientific applications? What are the 
trade-offs in investing in foundation models versus other mathematical and 
computational approaches? 
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cesses and exemplar use cases of foundation models and potential applications 
in which DOE could be most successful in its endeavors with foundation models 
for science. Chapter 4 discusses the strategic considerations and directions of 
foundation model use while challenges that the use of foundation models impose 
are covered in Chapter 5. The committee addresses major conclusions and recom-
mendations throughout Chapters 2 through 5. 

The committee would like to stress that while the report uses the terms AI, 
AI for science, AI models, LLMs, machine learning, and foundation models, 
the report is specifically directed toward the use and development of foundation 
models for science. The report is further specifically directed toward DOE’s use 
and development of these models. 
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2

Foundation Models and 
Traditional Modeling

DEFINING THE SCOPE AND USE OF FOUNDATION MODELS

The landscape of artificial intelligence (AI) is undergoing a significant trans-
formation driven by the emergence and evolution of foundation models. These 
models, typically large-scale neural networks trained on vast quantities of het-
erogeneous data, represent a departure from traditional AI systems designed for 
specific tasks. Foundation models possess the capacity to generate findings and 
discern patterns within extensive data sets with data volumes that exceed by 
orders of magnitude the computing and storage capacities of traditional solvers 
and even previous machine learning models. 

Key characteristics defining foundation models include the following:

•	 Massive scale: Trained on vast data sets (web-scale, trillions-plus of data 
points) with immense internal complexity (trillions-plus of parameters), 
requiring significant computational resources for their processing.

•	 Self-supervised pretraining: Learning from unlabeled data, reducing the 
need for manual annotation.

•	 Adaptability (transfer learning): Easily fine-tuned for diverse downstream 
tasks, leveraging pretrained generalizable knowledge.

•	 Emergent inference: The ability to derive context and demonstrate reason-
ing that is not explicitly in the training data.

•	 Multimodal and task-agnostic: Ability to handle multiple modes of in-
puts, regardless of task. 

•	 Multipurpose architecture: The architectures featuring combinations of 
transformers with attention mechanisms, encoders/decoders, and multi-
layer perceptrons are proving effective across modalities.

16
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•	 Scalability: Performance generally improves with larger models, data 
sets, and computational capability. The same architecture can be adapted 
across domains via fine-tuning and deployed in resource-constrained en-
vironments using quantization (lower precision), selective activation of 
parameters, and low-rank adaptation.

•	 Generalizability: Transferring knowledge across diverse tasks and do-
mains with minimal retraining, enabling strong zero-shot and few-shot 
performance, valuable for scientific and engineering applications using 
large technical data sets.

These characteristics position foundation models as a potential paradigm shift1 
for scientific research with a concomitant impact on the Department of Energy’s 
(DOE’s) mission.

BENEFITS OF ONLY USING FOUNDATION MODELS

In evaluating the roles of foundation models for scientific discovery, a natural 
early question is whether they present stand-alone alternatives to the model-
ing approaches that preceded them. We examine this perspective in the current 
section.

The key strengths of foundation models lie in adaptability, generalizability, 
scalability, and their capacity for multimodal integration. Foundation models can 
seamlessly combine multiple data modalities—including numerical simulation 
outputs, experimental sensor data, textual documentation, images, and videos—
into unified representational frameworks. This unique capability makes them 
particularly well suited for fields such as life sciences, materials science, fluid 
dynamics, weather forecasting, and energy systems, where data complexity and 
heterogeneity pose significant challenges to traditional methods.

The scalability of foundation models, supported by large-scale computational 
resources, allows them to uncover complex patterns and interactions within 
massive data sets. This results in accelerated discovery and improved predic-
tive performance in multifaceted scientific scenarios (Bodnar et al. 2025). Their 
generalized learning mechanisms further enable deployment across diverse op-
erational contexts without requiring extensive manual reprogramming. In envi-
ronments such as DOE facilities, this adaptability can lead to more dynamic and 
responsive control systems, enhancing operational efficiency and resilience in the 
face of evolving conditions.

Within DOE’s computational science program, foundation models bring two 
particularly valuable advantages. The first centers on spatiotemporal foundation 
models—transformer-based architectures pretrained on large data sets derived 

1 A paradigm shift in this context means a fundamental change in how scientific research is con-
ducted, driven by the introduction of foundation models.
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from high-fidelity simulations of multiphysics systems described by partial dif-
ferential equations. These models can forecast spatiotemporal solutions, aligning 
with one of the core goals of scientific machine learning: extending the capabili-
ties of traditional, computationally expensive, discretization-based solvers. Spa-
tiotemporal foundation models offer dramatic reductions in computational cost, 
enabling large-scale or long-time simulations at up to five orders of magnitude 
less computational effort. This has been compellingly demonstrated in domains 
such as Earth system modeling (Bodnar et al. 2025).

Although spatiotemporal foundation models may not yet achieve the ac-
curacy of equation-based solvers, they offer a compelling trade-off through fine-
tuning. When pretrained on a broad range of physics, these models can be adapted 
to new physical systems not present in the original training data. Remarkably, this 
transfer learning often yields better results than training the model from scratch 
on a single, narrow domain. Thus, spatiotemporal foundation models not only 
function as efficient solvers but also provide a scalable framework for general-
izing across physical phenomena—an invaluable capability in a wide-ranging 
computational science program. Examples include multiphysics pretraining (Mc-
Cabe et al. 2023) and co-domain neural operators (Rahman et al. 2024).

A second and perhaps even more intriguing potential lies in the inference 
of emergent physics. Because of the underlying transformer architecture—spe-
cifically the use of attention mechanisms and the capacity to learn contextual 
relationships over long pretraining epochs—these models may begin to reveal 
new physical findings or discoveries. They could go beyond simply generating 
solutions to explain the emergence of features in space and time, such as why 
vortex structures emerge in certain regions of a flow at specific times, or how 
macroscale material failure occurs as a consequence of microcrack and disloca-
tion interactions. Such tasks are central to the roles of computational physicists. 
This possibility becomes even more plausible when spatiotemporal foundation 
models are integrated with large language models (LLMs) into multimodal sys-
tems (Ashman et al. 2024). Such combinations may bridge the gap between 
predictive modeling and interpretive reasoning, bringing us closer to models that 
not only solve complex physical systems but also explain them.

BENEFITS OF USING “TRADITIONAL MODELING” 
OVER FOUNDATION MODELS

In the context of DOE applications, traditional models refer to large-scale 
computational science solvers as well as statistical models. The solvers include 
finite element, finite difference, finite volume, and spectral methods and related 
numerical techniques. Over decades, partnerships between DOE and computa-
tional science researchers at U.S. universities have fostered the development of a 
robust ecosystem of discretization-based solvers. Supported by DOE’s Advanced 
Scientific Computing Research and DOE’s National Nuclear Security Adminis-
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tration Advance Simulation and Computing programs, this effort has produced 
vast suites of high-performance scientific software, much of it pioneered within 
DOE laboratories. Examples include the Trilinos Project, Dakota, and MFEM 
(Adams et al. 2020; Anderson et al. 2021; Heroux et al. 2005).

This ecosystem enables the modeling and simulation of a wide range of 
multiphysics problems relevant to DOE missions. It has evolved to support 
computations at the exascale and beyond, laying a firm foundation for applying 
computational science to complex, large-scale problems in physics, energy, Earth 
systems, and national security. As machine learning and artificial intelligence 
have grown in prominence, DOE-supported computational frameworks have 
begun to incorporate these data-driven methods, enriching traditional modeling 
approaches without discarding them.

A core strength of discretization-based solvers is their ability to deliver 
high-fidelity solutions that accurately represent the underlying physics—bounded 
mainly by the numerical algorithms and available computing power. These 
solvers explicitly encode conservation laws (e.g., energy, mass, momentum), 
thermodynamic consistency, and convergence properties, ensuring that model 
predictions are transparent, interpretable, and physically grounded. Such fidelity, 
however, comes at a cost: these models often demand significant computational 
resources, especially for large spatial domains or long-time horizons.

Despite the emergence of foundation models, traditional physics-based mod-
els retain critical advantages, particularly in interpretability, reliability, and strict 
adherence to physical laws. They are accompanied by rigorous verification, 
validation, and uncertainty quantification frameworks essential for DOE’s high-
stakes applications—such as nuclear reactor safety, weapons stewardship, and 
other national security tasks. These frameworks ensure compliance with safety, 
regulatory, and quality standards, which remain challenging for purely data-
driven foundation models to satisfy. Furthermore, foundation models have yet to 
demonstrate generalizability across geometries, initial and boundary conditions 
and transitions such as phase changes, laminar-to-turbulent flow, shock forma-
tions, and material failure. These are standard for advanced discretization-based 
solvers.

In addition to being more amenable to interpretation and to the quantification 
of their uncertainty, traditional models often require less computational overhead 
for model development and deployment compared to the extensive pretraining 
and fine-tuning phases of foundation models. (However, geometry and mesh 
generation can prove time-consuming, and the expense of large direct numerical 
simulations is a well-recognized limitation.) Furthermore, traditional models play 
a foundational role in the data ecosystem—they are often required to generate the 
high-quality data used to train, fine-tune, or validate foundation models.

Another powerful advantage of traditional approaches lies in their ability to 
be integrated into statistical modeling frameworks. In many settings, physics-
based models, of moderate or lower fidelity, can be embedded within Bayesian 
hierarchical structures to facilitate efficient uncertainty quantification. 
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BENEFITS OF USING TRADITIONAL  
MODELING WITH FOUNDATION MODELS

Integrating Foundation Models with Traditional Scientific 
Computing: A Pathway to Accelerated Discovery

Integrating traditional modeling approaches with foundation models offers 
transformative potential for DOE’s scientific enterprise. Traditional computa-
tional methods—such as finite element, finite volume, and spectral solvers—have 
formed the bedrock of high-fidelity simulations, enabling predictive science 
across complex domains such as materials physics, turbulent fluid flow, Earth 
systems modeling, and nuclear systems, as outlined above. These models are 
grounded in well-understood physical laws and verification and/or validation pro-
tocols, making them indispensable for safety-critical and regulatory-constrained 
applications. However, they come with significant computational demands, par-
ticularly for large-scale or long-time simulations.

The committee reiterates that by contrast, foundation models trained on vast 
multimodal data sets—including simulation results, sensor data, imagery, and sci-
entific literature—offer scalability, generalizability, and data-driven adaptability. 
Rather than viewing foundation models as replacements for traditional methods 
in computational science, the committee advocates for a synergistic integration of 
the two (Koumoutsakos 2024). Hybrid modeling strategies can fuse the physical 
interpretability and robustness of classical solvers with the efficiency and learn-
ing capabilities of foundation models, particularly in multiscale, multiphysics 
applications where stand-alone approaches often fall short.

Accelerating Scientific Discovery Through Hybrid Approaches

Foundation models can significantly enhance the entire research life cycle 
at DOE national laboratories and user facilities through multiple avenues of 
hybridization:

•	 Simulation Acceleration and Enhancement: Foundation models, trained as 
surrogate models, can emulate computationally expensive physics simu-
lations, allowing for accelerated parameter sweeps, ensemble studies, 
and real-time forecasting. Applications range from turbulence and fusion 
modeling to Earth systems science and high-energy physics. Moreover, 
foundation models can discover governing dynamics—such as learn-
ing coefficients in ordinary differential equations or structures in partial 
differential equations (PDEs)—directly from data (Ye et al. 2025). This 
enables breakthroughs in both forward prediction and inverse problem-
solving (Bodnar et al. 2025; McCabe et al. 2024; Nguyen et al. 2023; 
Rahman et al. 2024; Ye et al. 2025).
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•	 Experimental Data Analysis: DOE facilities generate massive data sets 
across diverse modalities. Multimodal foundation models can interpret 
these data in real time, performing automated feature extraction, anom-
aly detection, and pattern recognition—for example, identifying material 
phases in scattering data (Brodnik et al. 2023). This capability paves the 
way for “self-driving” experiments that optimize limited facility time 
and dynamically adjust to emergent results, fundamentally transforming 
experimental workflows.

•	 Knowledge Discovery and Hypothesis Generation: With the scientific lit-
erature growing exponentially, foundation models—especially LLMs fine-
tuned on curated corpora such as DOE’s Office of Scientific and Technical 
Information repositories (Sakana.AI, 2024; Skarlinski et al. 2025)—can 
synthesize findings, identify knowledge gaps, generate novel hypotheses, 
and suggest experiment designs. Programs such as the Defense Advanced 
Research Projects Agency’s Discovery of Algorithms and Architectures il-
lustrate how LLMs can discover fundamental scientific computing modules, 
further validating the utility of AI in hypothesis-driven research (DARPA 
2025).

•	 Autonomous Laboratories: The fusion of foundation models with robotics 
and automated platforms unlocks the vision of “self-driving laborato-
ries” that can autonomously design, execute, and interpret experiments 
(Skarlinski et al. 2025). These systems promise to dramatically accelerate 
research cycles in materials discovery, synthetic biology, and beyond.

Methods of Integration: Hybrid and Agentic Architectures

Foundation model development is progressing toward augmenting tradi-
tional simulations by learning data-driven corrections to reduced-order models. 
For example, foundation model–based closure approximations in turbulence 
and combustion science could improve fidelity, while in nuclear and Earth sys-
tems modeling, they could enhance accuracy and enable rigorous uncertainty 
quantification:

•	 Data-Driven Corrections: Foundation models can augment traditional 
simulations by learning data-driven corrections to approximate or simpli-
fied models. For example, foundation model–based closure approxima-
tions in turbulence and combustion science improve fidelity, while in 
nuclear and Earth systems modeling, they enhance accuracy and enable 
rigorous uncertainty quantification (Bodnar et al. 2025).
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•	 Inference from Traditional Simulations: A direct method of integration 
involves generating spatiotemporal simulations using traditional solv-
ers and then using LLMs for inference. Given snapshots of numerical 
fields—as either gridded data or imagery—current-generation LLMs can 
describe and interpret system behaviors in natural language. This capabil-
ity is further enhanced by combining simulation outputs with symbolic 
and textual representations of the underlying physics (McCabe et al. 2023; 
Rahman et al. 2024).

•	 Spatiotemporal Foundation Models: These models, pretrained and fine-
tuned on outputs from traditional solvers, learn spatiotemporal variation 
from their training data while enabling rapid forecasts in new contexts. 
Their ability to generalize across physics, especially when pretrained 
on diverse PDEs and fine-tuned to specific ones, highlights the value of 
transfer learning in computational science (Herde et al. 2024; McCabe et 
al. 2023; Rahman et al. 2024).

•	 Agentic Workflows with Reasoning Capabilities: Multimodal LLMs can 
orchestrate workflows where AI agents dynamically choose between in-
voking a traditional solver or using a pretrained foundation model. These 
agents integrate simulations, mathematical formulations, and natural 
language descriptions to perform inference, design studies, or explain 
observed behaviors. Advanced techniques such as retrieval-augmented 
generation and reasoning further improve performance by grounding 
reasoning in contextually relevant information (Gottweis et al. 2025).

Toward a New Scientific Paradigm

The fusion of foundation models with traditional numerical methods repre-
sents more than a computational advance: it constitutes a paradigm shift in how 
scientific discovery is conducted. By combining rigorous physical modeling with 
the adaptive learning capabilities of modern AI, this hybrid approach opens the 
door to faster, more accurate, and more autonomous science. 

From accelerating simulations to enabling real-time experimental feedback 
and automating hypothesis generation, the integration of foundation models into 
DOE’s computational and experimental ecosystem promises to reshape the pace 
and scope of scientific innovation (Bodnar et al. 2025; Herde et al. 2024; McCabe 
et al. 2023; Nguyen et al. 2023; Ye et al. 2024, 2025).

Conclusion 2-1: Integrating traditional models with foundation models 
is proving to be increasingly powerful and has significant potential to 
advance computational findings in the physical sciences. These hy-
brid methods leverage the physical interpretability and structures of 
classical computational approaches alongside the data-driven adapt-
ability of foundation models. This integration enables the modeling of 
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complex multiphysics, multiscale, and partially observed (understood) 
systems that challenge traditional approaches both computationally and 
mathematically.

Recommendation 2-1: The Department of Energy (DOE) should 
invest in foundation model development, particularly in areas of 
strategic importance to DOE, including areas where DOE already 
has advantages leveraging its unique strengths in those domains. 
DOE should also prioritize the hybridization of foundation mod-
els and traditional modeling. Such hybrid modeling strategies can 
fuse the physical interpretability and robustness of classical solvers 
with the efficiency and learning capabilities of foundation models, 
particularly in multiscale, multiphysics applications where tradi-
tional approaches have limitations in capturing the heterogeneity, 
complexity, and dynamics of the physical system. DOE should not, 
however, abandon its expertise in numerical and computational 
methods and should continue investing strategically in software and 
infrastructure.
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3

Exemplar Use Cases of  
Foundation Models

DEPARTMENT OF ENERGY’S ROLE IN 
FOUNDATION MODEL DEVELOPMENT

The strategic focus of a Department of Energy (DOE)-wide foundation 
model initiative remains a subject of debate, requiring the department to balance 
its broad application space, navigate the trade-offs between leveraging past in-
dustry advancements, address the unique national security imperatives of DOE, 
and ensure responsible stewardship of taxpayer resources, particularly in light of 
the opportunity costs associated with prioritizing artificial intelligence (AI) over 
more mature technologies.

There are an ever-increasing number of efforts across DOE national laborato-
ries integrating AI and foundation models into their research programs. Naturally, 
one of the key targets is energy-related applications ranging from electric grids 
to nuclear fusion. A primary consideration is the perception that DOE cannot 
compete with the head start in technology maturation and large market share 
currently held by large companies. In the foundation model market, leaders such 
as Microsoft (via OpenAI), Google/Gemini, Amazon Web Services, Meta, and 
Anthropic each back efforts with investments ranging from $10 billion to more 
than $75 billion in funding and infrastructure (Fernandez et al. 2025), a scale 
that DOE would be hard pressed to match. This raises a fundamental question 
of whether DOE should focus on collaborations with industry or focus on a 
complementary space based on DOE’s unique mission in curating foundational 
science while improving national security. The committee believes that DOE 
has reason to develop foundation models internally, in addition to private-sector 
leadership, because the needs of the government (whether for national security 
or continued scientific preeminence) will not be met by private interests. The two 
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endeavors (private and public) do not compete—they complement each other and 
can leverage each other.

Conclusion 3-1: Commercial industry has driven rapid progress in 
developing large language model–based foundation models, yielding a 
robust ecosystem of tools and capabilities. As demonstrated by, for ex-
ample, the collaboration between Los Alamos National Laboratory and 
OpenAI, DOE can leverage industry advances, findings, and collabora-
tions as it develops foundation models for science and conducts coor-
dinated DOE-wide assessments to identify appropriate opportunities.

DOE is the largest single federal sponsor of scientific research in the United 
States, providing approximately $16 billion in research and development (R&D) 
funding in fiscal year (FY) 2023, which represents roughly 8 percent of total 
federal R&D obligations (Blevins 2022). Through its Office of Science, DOE 
supports approximately 40 percent of all federal basic research in the physical 
sciences, and an estimated 44 percent of federal basic research in computer and 
information sciences, including foundational work in nonconvex optimization, 
probabilistic methods, and large-scale high-performance computing (NCSES 
2023). Although DOE is unlikely to match the pace or scale of commercial 
product development, it retains clear strategic advantages in five areas: (1) a 
world-class scientific workforce in computational science; (2) access to large-
scale, science-focused, and experimental computing hardware; (3) stewardship 
of unique experimental facilities and open and controlled or classified scientific 
data; (4) capability to tackle long-term, high-risk, high-reward scientific prob-
lems; and (5) access to unique scientific data that may not be easily reproduced 
and which can be expanded as synthetic data may be necessary for training future 
foundation models.

Despite a mismatch in funding allocations, DOE’s Exascale Computing Proj-
ect (ECP)1 guided the development, procurement, and construction of the Frontier 
and Aurora supercomputers at a total cost of approximately $1.7 billion. Frontier 
achieves a peak performance of 1.35 exaflops, and Aurora reaches approximately 
1.01 exaflops. For a rough comparison, a machine like Aurora could train a model 
like GPT-4 on the order of ~200 days, suggesting that the best option for DOE 
is not to directly compete in the same general-purpose paradigm. With recent at-
tention toward the disruption of DeepSeek, which some analyses suggest offered 
a ~10× increase in efficiency, existing ECP-funded resources become arguably 
more competitive, particularly when buoyed by the highly skilled workforce 
represented by the national laboratories. In fact, ECP-funded resources have the 
potential to train foundation models from scratch, deploy stochastic optimization 
algorithms at scale, or run multiagent simulations in real time. This is evidence 
that the field is advancing in a direction that could make DOE’s resources feasible 
for the training of foundation models for science. 

1 See https://www.exascaleproject.org.
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When comparing DOE and industry capabilities, one of the most significant 
differences is the scale and richness of physical and simulation data generated 
by DOE’s network of user facilities, nuclear weapons–testing archives, ongoing 
experimental campaigns, and high-performance computing facilities. These data 
span both classified and unclassified domains and present unique opportunities 
for DOE-relevant advances in foundation models. New modes of inquiry that 
have become successful in the industrial setting (e.g., Google DeepMind’s alpha-
evolve) have great potential for DOE applications. A central technical challenge 
is whether secure training methods, such as federated learning, can be designed 
to mathematically preclude the leakage of sensitive or controlled information. If 
so, this could enable the construction of scientific foundation models that operate 
across heterogeneous and compartmentalized data sources. If not, certain classes 
of model architectures may prove fundamentally incompatible with DOE’s mis-
sion constraints.

Conclusion 3-2: DOE retains clear strategic advantages in five ar-
eas: (1) a world-class scientific workforce in computational science; 
(2) access to large-scale, science-focused, and experimental comput-
ing hardware; (3) stewardship of unique experimental facilities and 
open and controlled or classified scientific data; (4) capability to tackle 
long-term, high-risk, high-reward scientific problems; and (5) access 
to unique scientific data that may not be easily reproduced and which 
can be expanded as synthetic data may be necessary for training future 
foundation models.

Many of DOE’s experimental platforms are already compatible with re-
mote operation and automation. This includes user-facing beamlines, additive 
manufacturing facilities, and autonomous platforms for chemical synthesis and 
materials fabrication. At the same time, recent advances in retrieval-augmented 
generation (RAG) have introduced new strategies for connecting large language 
model (LLM) outputs with authoritative external sources. DOE could consider 
a coordinated program, either independently or in partnership with academia 
and industry, in which traditional physics-based simulations or experiments are 
launched in an agentic loop and used to refine LLM reasoning. This concept is 
particularly viable in diverse domains such as small-molecule chemistry and 
mature simulation codes (e.g., computational fluid dynamics, electromagnetism, 
molecular dynamics). An important example is the recent effort by researchers 
at Lawrence Livermore National Laboratory to combine AI with fusion target 
design by deploying AI agents on two of the world’s most powerful supercom-
puters to automate inertial confinement fusion simulations and thus accelerate 
experiments. Additional potential benefits of AI in the quest for fusion energy 
are provided in the next section.

However, in many scientific contexts, human expertise remains essential for 
initiating, interpreting, and validating results. Discovery via the use of experimental 
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or computational platforms relies crucially on the deep bench of technical exper-
tise at the laboratories that can be rapidly tapped to analyze previously unseen 
scenarios in high-consequence national security settings with limited time to solu-
tion. In these settings, foundation models may act as an accelerant for analysis, 
but are currently not viewed as sufficiently reliable for trustworthy application.

HUMAN IN THE LOOP AND ARTIFICIAL  
INTELLIGENCE FOUNDATION MODEL AUTONOMY

Human oversight remains essential in deploying and utilizing foundation 
models, especially in high-risk or high-impact scientific and engineering contexts. 
Foundation models enhance the productivity of researchers by, for example, ac-
celerating targeted literature reviews, optimizing code and algorithm design, and 
dramatically reducing the time required to prototype and validate solutions. By 
automating many of the routine or well-established steps in the research pro-
cess, foundation models allow scientists and engineers to focus on higher-level 
reasoning and innovation. However, it is important to keep in mind that these 
capabilities come with a significant caveat: foundation models are capable of 
generating both highly sophisticated statements and nonsense. Although they can 
produce novel findings and accurate solutions, they can just as easily generate 
plausible-sounding but incorrect or misleading outputs. For this reason, and for 
the foreseeable future, a human-in-the-loop approach is desirable (even essen-
tial), ensuring that domain expertise and critical thinking guide the use and in-
terpretation of model outputs. In this context, we mention that there are different 
levels or schemas of handoff, that is, the transfer of decision-making authority 
or control between a human and a foundation model (or agentic environment). 
The nature of the handoff depends on both the confidence in the model’s output 
as well as on the level of criticality (risk) associated with the decision one is 
trying to make. Importantly, this concept and associated schemas will evolve as 
foundation models become more mature and trustable (see Chapter 5 for details 
on quantifiable confidence).

A powerful example of this human–AI interaction is DeepMind’s AI co-
scientist work (Gottweis and Natarajan 2025), a multiagent system built on 
Gemini, designed to assist scientists, engineers, and researchers in general in 
formulating hypotheses, conducting literature reviews, and building experimental 
frameworks. In this work, specialized agents operate asynchronously to gener-
ate, evaluate, and fine-tune scientific hypotheses. In several instances, this col-
laborative approach has made it possible for scientists to interact easily and very 
naturally with AI, providing inputs, prompts, or feedback to guide research, with 
final oversight and authority remaining with the investigator. For example, the 
AI Co-Scientist has demonstrated its potential impact in biomedical research, 
suggesting novel approaches to inhibit disease progression in conditions, such as 
liver fibrosis, that showed promising potential. 
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Another compelling example of human–AI interaction enabled by founda-
tion models is the use of AI copilots in software development. Importantly, this 
approach is quickly becoming the norm in modern software engineering. For 
example, tools such as Cursor, which is built on top of LLMs and fine-tuned for 
code generation, offer real-time support in writing, debugging, and refactoring 
code (Anysphere n.d.). These systems serve as smart and efficient collaborators, 
helping developers implement complex algorithms and explore alternative code-
design patterns. Some of these tools integrate seamlessly with developer work-
flows, allowing users to query codebases in natural language, generate multifile 
implementations, and suggest algorithmic solutions from minimal user prompts 
and/or examples. Although these tools do not replace developers, they act as ac-
celerators, cutting down on repetitive and established coding tasks. As a result, 
engineers can focus on architectural decisions and problem solving. Notably, 
this also lowers software skill requirements. Again, the human remains in the 
loop; although the model may generate functional code, oversight is mandatory 
to validate correctness. 

This paradigm illustrates how the synergy between human expertise and 
foundation model capabilities can lead to more efficient, reliable, and responsible 
scientific outcomes.

Conclusion 3-3: While AI systems can exceed human performance in 
many ways, they can also fail in ways a human likely never would. For 
this reason, the qualification of AI will be necessary for decision making 
and prediction in the presence of uncertainty.

Based on the discussion above, the integration of foundation models into 
scientific and engineering pipelines raises concerns about the future of employ-
ees working in these sectors. In fact, although these models boost productivity, 
they put at risk those roles that are focused on repetitive, manual, or routine 
tasks. Roles dedicated to basic literature reviews, boilerplate coding, standard 
documentation, and straightforward data analysis could be significantly affected. 
Importantly, in many cases, foundation models could be able to perform at scale 
and with more reliability than that of a human.

On the other hand, roles that require deep domain expertise and critical judg-
ment (e.g., principal investigators, senior engineers, code architects, and regula-
tory or quality assurance engineers) are less likely to be removed. In fact, because 
of the need for human oversight when it comes to the interpretation of output of 
foundation models, these roles become even more valuable, as they are funda-
mental in verifying and building on top of what AI-based machines can achieve. 

In short, foundation models potentially introduce a paradigm shift, where 
humans act as big-picture strategists and critical evaluators of AI-generated out-
puts, ensuring that they are technically correct and aligned with larger scientific 
and engineering goals.
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Recommendation 3-1: The Department of Energy (DOE) should 
study and develop the fusion of artificial intelligence (AI) and hu-
man capabilities. At present, AI systems handle the repetitive, man-
ual, or routine tasks, and are starting to show abilities to reason. As 
AI becomes more capable, deep analysis and strategy recommenda-
tions become feasible, but humans should maintain oversight and 
validation, particularly for qualification and other aspects of DOE’s 
mission.

Recommendation 3-2: The Department of Energy should evaluate 
the capabilities and risks of agentic artificial intelligence (AI) sys-
tems for its core applications. In particular, the committee advocates 
exploring agentic AI for developing autonomous laboratories for 
scientific discovery, decision making, and action planning for high-
stakes applications. 

SCIENTIFIC AND ENGINEERING APPLICATIONS

In the context of scientific and engineering applications, foundation models 
(FMs) trained on observations, scientific literature, databases, as well as ex-
perimental results and outputs of simulations can be used to support hypothesis 
generation. In engineering, the use of FMs is becoming predominant in design 
settings, specifically in tasks such as CAD (computer-aided design) generation. 
These applications demonstrate how FMs can serve as intelligent copilots for 
researchers and engineers, enhancing productivity and enabling new modes of 
discovery.

DOE’s mission encompasses many areas including materials science, chem-
istry, physics, energy, Earth systems, and high-performance computing, to name 
a few. DOE also supports national security missions such as stewardship of the 
nation’s nuclear stockpile. Because DOE’s mission includes so many scientific 
and engineering disciplines, it is only possible to provide a few examples below 
to illustrate how FMs might accelerate progress. 

Materials Science

Materials science seeks to understand and control the relationships between 
structure, processing, properties, and performance across multiple spatiotempo-
ral scales. FMs trained on experimental data, literature, and simulations offer a 
promising path to accelerate discovery—namely, through property prediction, 
retrosynthesis, and molecular generation. These models can predict properties, 
generate candidate structures, and guide automated experiments, reducing reli-
ance on costly first-principles calculations (Berger 2025; Pyzer-Knapp et al. 
2025). When coupled with high-throughput synthesis, they could transform ma-
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terials discovery from a decades-long process into an iterative, data-driven cycle. 
Recent advances include MatBERT, a materials science transformer developed 
at Lawrence Berkeley National Laboratory (Trewartha et al. 2022), and IBM’s 
open-source FMs for sustainable materials design (Martineau 2024). We highlight 
some areas in which FMs are already being used to significant impact—namely, 
property prediction, retrosynthesis, and molecular generation—and also look to 
the future to outline areas that we believe are key to continuing to unlock value. 
These areas hinge on exploiting the natural multimodality and multifidelity char-
acteristics of materials data through increasingly powerful and elegant modeling 
approaches. The application of FMs faces challenges such as vast chemical and 
structural design spaces, bridging scales, and integrating experimental, com-
putational, and theoretical insights into predictive frameworks with quantified 
uncertainties (Morgan and Jacobs 2020).

Battery Technology

In battery technology, FMs are accelerating innovation from materials to 
management. Researchers are developing these models to rapidly screen and 
predict the properties of novel battery materials, such as new electrolytes, thus 
speeding up the discovery process (Xu et al. 2024). Furthermore, they are be-
ing used to create more sophisticated battery management systems that provide 
highly accurate predictions of a battery’s state of health and remaining useful life 
(Chan et al. 2025). By understanding the deep patterns of battery degradation, 
these models are helping to design safer, longer-lasting, and more efficient energy 
storage solutions for everything from electric vehicles to grid-scale applications.

Advanced Manufacturing

Advanced manufacturing (AM) uses computer-controlled, automated pro-
cesses to produce complex components relevant to DOE’s mission. This type of 
manufacturing distinguishes itself from conventional mold-based or subtractive 
manufacturing in that it enables rapid prototyping, cost-effective experimentation, 
and just-in-time production of complex components as a single unit (e.g., rocket 
nozzles). AM is increasingly vital to DOE and its National Nuclear Security Ad-
ministration (NNSA) for both energy science and national security missions, with 
the goal of creating parts that are “born qualified” for their intended use (Boyce 
2016). Moreover, FMs offer promising solutions by integrating heterogeneous 
data to support tasks such as anomaly detection, process optimization, and predic-
tive control (Autodesk 2025; Era et al. 2025; NVIDIA n.d.; Zhang et al. 2025).

Key challenges remain, as AM materials are often out of thermodynamic 
equilibrium, leading to undesirable properties such as low ductility or fracture 
toughness (Forien 2023). Developing digital twins, computational replicas of AM 
processes, is a major research focus across DOE and NNSA laboratories (LLNL 
n.d.) and an area that is being transformed by the adoption of FMs.
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Weather and Earth Systems

Predicting weather and understanding Earth systems is critical to decision 
making (Conti 2024). Large-scale simulations of weather remain limited in 
the range of their time horizons and spatial resolutions due to computational 
constraints. FMs offer solutions by developing accurate parameterizations for 
subgrid-scale processes such as clouds and turbulence, identifying patterns, 
and improving understanding of climate dynamics. FMs for Earth systems and 
weather are pretrained on massive, heterogeneous Earth-system data sets and 
are fine-tuned for diverse downstream tasks. Data-driven weather models, such 
as GraphCast (Lam et al. 2023) are becoming central to several FMs that in-
volve localized forecasts and can significantly impact applications such as ag-
riculture and power grids. Aurora (Bodnar et al. 2025), a 1.3-billion-parameter 
model pretrained on more than 1 million hours of multimodal geophysical data, 
outperforms traditional numerical forecasts in global weather forecasting, air 
quality monitoring, ocean wave prediction, and tropical cyclone tracking, all 
at lower computational cost. Similarly, Prithvi WxC (Schmude et al. 2024), a 
2.3 billion-parameter transformer model trained on 160 atmospheric variables 
from MERRA-2, is designed for multitask adaptation, including downscaling, 
extreme-event estimation, and parameterization. Projects such as ORBIT (Wang 
et al. 2024), a hybrid transformer model with 113 billion parameters for Earth 
system predictability, hold potential to accelerate climate projections, improve 
extreme-event forecasts, and unify disparate Earth-system modeling tasks. Key 
challenges include integrating real-time data assimilation, maintaining physical 
consistency over long prediction horizons, and scaling to capture multiscale in-
teractions across atmosphere, ocean, land, and cryosphere. 

Fusion

The quest for fusion energy involves extremely complex plasma physics 
and engineering challenges. FMs can accelerate the computationally demanding 
simulations of plasma behavior (e.g., using codes such as X-Point included Gy-
rokinetic Code) (Churchill 2024), help analyze the vast amounts of diagnostic 
data from experiments such as Doublet III D-Shaped or the International Ther-
monuclear Experimental Reactor (see also the agenda for the Simple Cloud-
Resolving E3SM Atmosphere Model), assist in designing reactor components 
tolerant of extreme conditions, and potentially contribute to real-time plasma 
control systems needed for sustained fusion reactions. We believe that this trend 
will continue. In inertial confinement fusion, AI and fine-tuned FMs can help 
design reproducible high-fusion-gain targets. These models are pretrained on 
vast and diverse data sets including experimental data from tokamaks and mas-
sive simulations. They are fine-tuned for downstream tasks, such as predicting 
plasma disruptions, optimizing control systems in real time, improving diag-
nostic interpretation, and accelerating the design cycle for reactor components 
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(Badalassi 2023; Churchill 2024; DOE 2024). In magnetic confinement experi-
ments, such models are being explored for real-time control to adjust magnetic 
fields and mitigate instabilities like tearing modes, which can severely limit 
performance (DOE n.d.). Beyond control, LLMs augmented with (RAG are 
being used to quickly access historical data and identify similar experimental 
conditions to guide new trials (Poore 2023). Furthermore, the design of durable 
fusion materials and tritium-breeding blankets that can withstand extreme re-
actor environments is being addressed by integrating foundation models with 
high-performance computing to create comprehensive simulation environments 
(Badalassi et al. 2023; DOE 2024; PNNL n.d.).

The committee would like to stress some of the dangers of adapting an ap-
plication too quickly. In the past 2 years, several groups have sought to replace 
costly plasma simulations with autoregressive neural surrogates that evolve hy-
drodynamic and electromagnetic fields without direct partial differential equation 
solutions (Carey et al. 2024, 2025; Galletti et al. 2025; Gopakumar et al. 2023; 
Poels et al. 2023). While these are important first steps, there are fundamental 
challenges that must be addressed before such approaches can form the basis 
of a true FM for fusion, comparable to those emerging in weather forecasting. 
Current efforts rely heavily on Fourier neural operators (FNOs), which cannot 
readily accommodate the complex geometries required for magnetic confinement 
fusion. Moreover, autoregressive roll-outs are prone to compounding errors over 
long prediction horizons (McCabe et al. 2023). This issue is particularly acute 
in fusion, where predictions must preserve gauge symmetries and conservation 
laws; this is well known in conventional plasma simulation contexts within the 
DOE community (Sharma et al. 2020). Off-the-shelf FNOs and transformer 
models lack these structural guarantees. A viable FM for fusion will therefore 
require new approaches that ensure long-term stability and strict preservation of 
physical structure.

Stockpile Stewardship 

The U.S. Stockpile Stewardship Program (SSP), managed by NNSA and 
its nuclear enterprise, aims to maintain the safety, security, and reliability of the 
nuclear arsenal without resuming underground testing. The national laboratories 
involved in these efforts have made significant progress using machine learning 
to obtain a deeper understanding of the relevant science and are increasingly 
exploring the use of FMs. These FMs are tuned with classified weapons science 
knowledge to gain a deeper understanding of the physics involved, thereby ac-
celerating progress across the entire program. This represents a substantial shift 
toward data-driven maintenance of the stockpile. 

One critical area for FM deployment is stockpile surveillance, the continuous 
monitoring of the health of the arsenal. FMs can be fine-tuned using a wealth 
of past findings and diagnostic images to rapidly assess potential deleterious 
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changes, helping experts quickly distinguish between changes that are not ma-
terial to future performance and those that require intensive investigation via 
simulation and experiment. Furthermore, FMs are essential in designing digital 
twins that predict component failure over time—an especially difficult task. By 
measuring a part’s response to its dynamic environment and assimilating these 
data, an FM can construct a digital twin to provide advance warnings of impend-
ing failure, such as fracture due to fatigue, allowing for proactive maintenance. 
There is significant overlap with areas such as structural health monitoring that 
may be useful to adopt in this effort (see following paragraph).

Despite their potential, the use of FMs for stockpile stewardship involves 
significant risks and challenges. The most prominent concern is security, as clas-
sified information must be strictly controlled and only provided to staff with the 
necessary “need to know” clearance, a protocol that must be maintained even 
within secure laboratory confines. Another challenge is preventing overreliance 
on the guidance provided by FMs, as this could inadvertently lead to poor design 
decisions regarding weapon components. The DOE laboratories involved in the 
SSP are well aware of these issues and are actively working to mitigate these 
risks.

Structural Health Monitoring

FMs are gaining significant attention for structural health monitoring and 
infrastructure surveillance, extending their utility from high-security areas such 
as the nuclear SSP to civilian applications such as bridges, viaducts, and high-
rise buildings. FMs can absorb massive, unlabeled data sets derived from sen-
sors—including accelerometers for vibration monitoring, imaging diagnostics, 
and Internet of Things devices. This generalized pretraining allows the models 
to learn robust, universal representations of structural behavior. Downstream 
tasks include anomaly detection and traffic load estimation on real-world civil 
infrastructure data (Benfenati et al. 2025; Bormon 2025; Hassani et al. 2024). 
A key application of FMs in civil infrastructure is the creation of intelligent, 
high-fidelity digital twins. By continuously assimilating real-time data from the 
physical structure (the “real twin”), FMs enable the virtual replica to accurately 
predict degradation, fatigue, and component failure over time. The integration 
of FMs into digital twins is an active area of investigation, aiming to reduce 
the significant manual effort typically required to create and maintain these 
models for cyber–physical systems (Ali et al. 2024). Although this technology 
promises enhanced safety and optimized resource allocation by distinguishing 
critical changes from nonmaterial ones, the field faces challenges related to data 
security, ensuring the fidelity and trustworthiness of FM-generated predictions, 
and managing the large computational resources required for both training and 
real-time inference.
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Combustion

Combustion systems, including engines, gas turbines, furnaces, and scram-
jets, show highly unsteady, multiscale dynamics. These dynamics stem from 
complex interactions among turbulence, multiphase, and reacting flows. Cur-
rent physics-based simulations are too costly for extensive design or operating 
space exploration and cannot directly use real-world experimental data. FMs 
are increasingly adopted for combustion research by leveraging vast heteroge-
neous data sets, such as direct numerical simulations, large-eddy simulations, 
and experimental diagnostics, to learn universal representations of combustion 
phenomena (Ihme and Chung 2024). FMs can assist in the acquisition of new 
insights into the physics controlling flame ignition, burning rate, flame stability, 
and emissions in high-pressure premixed combustion of various fuels, including 
hydrogen. These developments are crucial for the improvement of multifidelity 
science-based reduced-order models, methods, and digitalization, ultimately used 
by U.S. industry and its clients for optimal design and operation, near-real-time 
risk mitigation, and maintenance. Examples of ongoing efforts include a knowl-
edge processing framework for combustion science that integrates FMs with 
RAG to systematically parse literature, data sets, and simulation results, enabling 
automated reasoning and accelerated model development (Sharma and Raman 
2024). The interfacing of combustion and machine learning is mostly focused 
now on adopting supervised and semi-supervised machine learning techniques 
to combustion problems,

Recent progress in physics-informed machine learning provides a pathway 
to embedding physical constraints directly into FMs, making them suitable for 
high-fidelity combustion simulations (Cao et al. 2026). The adoption of an in-
verse modeling approach (Karnakov et al. 2024) and the extension of these efforts 
in order to account for proper validation and verification (McGreivy and Hakim 
2024) within an FM framework holds great potential for combustion science, an 
area central to the mission of DOE. 

National Security

In addition to the potential benefits described above, FMs can bolster other 
national security missions where DOE plays an important role:

•	 Nonproliferation and threat detection. FMs can process large, hetero
geneous data sets (e.g., satellite imagery, sensor data) to identify nuclear 
proliferation activities or emerging threats.

•	 Strategic analysis. They can assist analysts by synthesizing information 
from technical, geopolitical, and open-source materials to support strate-
gic decision making.
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FMs offer powerful tools for managing and securing energy infrastructure, 
such as the following:

•	 Grid management and optimization. FMs trained on operational data, 
weather patterns, and energy markets can enhance load forecasting, pre-
dict renewable generation (solar, wind), and optimize grid operations for 
efficiency and stability. 

•	 Resilience and threat mitigation. By analyzing complex system inter-
dependencies, FMs can identify vulnerabilities to physical threats (e.g., 
extreme weather) or cyberattacks. They can also assist in developing re-
sponse and recovery strategies, complementing planning tools such as the 
North American Energy Resilience Model. The concept of “GridFMs”—
FMs trained on diverse grid data—could significantly advance predictive 
capabilities, especially for cascading failure scenarios.

Although offering important benefits, FMs also pose risks if misused. The 
adversarial use of FMs, particularly LLMs, presents significant security risks that 
can be broadly summarized in two categories: attacks targeting the model itself 
and attacks leveraging the model as a weapon. 

Attacks against the model exploit its vulnerabilities to subvert its intended 
function or extract sensitive data. This includes prompt injection (or “jailbreak-
ing”), where an attacker crafts input to bypass safety filters and force the model 
to generate harmful or restricted content. Another major threat is data poisoning, 
which occurs when malicious data are subtly inserted into the training set, creat-
ing hidden backdoors or permanently degrading the model’s accuracy. Finally, 
risks such as model inversion and model stealing compromise confidentiality by 
allowing adversaries to reconstruct sensitive training data or illegally copy the 
model’s proprietary intelligence.

The second major risk involves using powerful FMs to accelerate and scale 
traditional cyberattacks. Adversaries leverage these tools to generate highly con-
vincing and personalized phishing e-mails and synthetic media (deepfakes), 
vastly increasing the success rate of social engineering. FMs also lower the bar-
rier for technical attacks by helping actors write and optimize malicious code 
or rapidly identify software vulnerabilities, making advanced cyberthreats more 
common. Furthermore, the complexity of integrating these models into larger 
systems creates new supply chain risks. For example, a successful prompt injec-
tion against an LLM that is integrated with an external tool (i.e., a database) can 
be used to execute a traditional command injection attack against the connected 
system, demonstrating that the AI model itself can become a single point of fail-
ure and a gateway to broader network compromise.

Users of FMs should invest in AI assurance, red teaming, and develop-
ment of countermeasures against adversarial applications of FMs, aligning with 
strategies such as Advance Simulation and Computing’s Artificial Intelligence 
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for Nuclear Deterrence program and the Frontiers in Artificial Intelligence for 
Science, Security and Technology’s trustworthy AI pillar.

Recommendation 3-3: To address potential security risks arising 
from the adversarial use of foundation models, the Department of 
Energy should explore strategies for artificial intelligence assurance, 
red teaming, and development of countermeasures.
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4

Strategic Considerations and  
Directions for Department of 
Energy Foundation Models

Many Department of Energy (DOE) missions demand rapid analysis and 
decision making under urgent national security or economic constraints. Geo-
political instability can abruptly disrupt access to critical materials essential for 
defense systems, requiring the swift identification and qualification of substitutes 
(Dingreville et al. 2024). Shifts in global manufacturing or adversaries’ adop-
tion of advanced technologies often force DOE programs to adapt legacy tools 
and processes to new material systems where empirical data may be scarce and 
existing models unreliable. Similarly, analysts must forecast the outcomes of non-
proliferation or emergency scenarios constrained by complex physical dynamics, 
such as weather evolution or blast propagation (EoP 2022). These challenges 
conflict with the traditional trial-and-error discovery cycle that still dominates 
materials development and qualification. Recent work highlights how data-driven 
foundation models, integrated with physics-based simulations, can sharply com-
press these timelines from years to days by guiding targeted experiments and 
enabling high-fidelity predictions of novel engineered systems (Frey et al. 2025).

The national laboratories hold deep institutional expertise, embedded in their 
workforce, legacy data sets, and extensive experimental and modeling infrastruc-
ture. Yet the sheer scale of the DOE system, characterized by siloed specialized 
knowledge and the complexity of coordinating a large, distributed workforce, 
can be fundamentally misaligned with the speed and flexibility required for rapid 
decision making. Foundation models pose a unique opportunity to automate the 
coordination of personnel, user facilities and other experimental infrastructure, 
and historical data to address this long-standing issue of institutional inertia. 
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Conclusion 4-1: Many DOE missions demand rapid analysis and deci-
sion making under urgent national security or economic constraints. 
While the national laboratories hold deep institutional expertise—em-
bedded in their workforce, legacy data sets, and extensive experimen-
tal and modeling infrastructure—the sheer scale of the DOE system, 
characterized by siloed specialized knowledge and the complexity of 
coordinating a large, distributed workforce, can be misaligned with the 
agility required for decisive action. Development of foundation models 
for this purpose poses a unique opportunity to address rapid analysis 
and decision making.

Recommendation 4-1: The Department of Energy should explore 
the use of foundation models to accelerate situational understanding 
by unifying dispersed, siloed, and diverse multimodal data sources 
as input to decision-making frameworks across heterogeneous 
environments.

MATERIAL INFORMATICS AND NEAR-
AUTONOMOUS SCIENTIFIC PLATFORMS

In contrast to industrial AI, DOE invested early in material informatics and 
high-throughput experimental data curation campaigns to build unique access to 
data sets, through the Material Genome Initiative and other efforts. By combin-
ing advanced AI models, high-performance computing, and curated experimental 
data, materials informatics can dramatically reduce the search space for viable 
material substitutes or processes. Recent successes demonstrate this potential: for 
example, generative machine learning approaches have identified candidate alloy 
systems that reduce dependence on critical rare Earth elements while preserving 
key performance properties (Dingreville et al. 2024). In another instance, Mi-
crosoft researchers screened over 30 million hypothetical compounds to identify 
new battery cathode chemistries that could cut lithium demand by as much as 
70 percent; a discovery pipeline that traditionally would have required years 
of sequential lab work (Baker 2024). Given DOE’s strong software ecosystem, 
they are uniquely positioned to combine existing efforts where high-throughput 
fabrication and characterization can be integrated with simulators and knowledge 
graphs encoding the literature to rapidly identify candidate alternatives for critical 
materials, processes for manufacturing novel materials, and tools for predicting 
new materials in poorly understood regimes.
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FEDERATED COMPUTING AND  
DEPARTMENT OF ENERGY FACILITIES

Among DOE’s most unique and critical resources are its large-scale user 
facilities, specialized manufacturing foundries, high-performance computing 
centers, and shared experimental platforms. Many of these facilities are already 
equipped with an astronomical number of sensors, generating enormous amounts 
of data that could be exploited for scientific discovery and process optimization. 

Advanced manufacturing facilities such as the Kansas City Plant and Y-12 
National Security Complex offer unique opportunities for tailored process im-
provements if information can be analyzed in a decentralized manner while main-
taining necessary controls on classified or sensitive data. The Office of Science 
has previously invested in federated learning approaches to develop distributed 
machine learning policies across fleets of assets, including user facilities and 
other systems, with theoretical guarantees of differential privacy. Related efforts 
have explored how advanced manufacturing processes, such as metal additive 
manufacturing, can be coordinated across identical machines operating at mul-
tiple sites where local conditions affect performance.

There is now a significant opportunity to integrate these federated systems 
with foundation models that can process distributed data streams or coordinate 
physical processes across heterogeneous environments. Such models could take 
multiple forms: large language models (LLMs) that augment scientists’ ability 
to manage complex distributed systems; agent-based frameworks that execute 
control policies or distributed data processing; or real-time physics simulators 
that interpret and contextualize sensor data at scale.

CURATION AND TRANSLATION  
OF SPECIALIZED KNOWLEDGE 

As DOE’s workforce turns over, the challenge of maintaining legacy weap-
ons systems and associated hardware or software tools becomes increasingly 
burdensome; frequently, a single scientist may hold a disproportionate amount 
of expertise on a given component or system. As staff transition to retirement or 
alternative career paths, their hard drives may contain vast swaths of data, simu-
lation configuration files, and source code that would take substantial time and 
financial investment to reproduce. Simultaneously, as new staff are hired, it is 
broadly understood that there is a steep learning curve to train on the deeply tech-
nical software and modeling frameworks used across the laboratories. Foundation 
models offer a technique to automate the consolidation of existing knowledge and 
can be used in a copilot configuration to train new members of the workforce, 
particularly in legacy programming languages or hardware systems that are rarely 
taught in contemporary university programs.
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MULTIMODAL ARTIFICIAL INTELLIGENCE 
FOR PHYSICS-BASED PREDICTION

Some of the most promising demonstrations of AI-augmented physics simu-
lation have emerged in short-term weather forecasting, where ubiquitous reanaly-
sis data have enabled models that can deliver real-time predictions on a single 
graphics processing unit, dramatically reducing the computational cost compared 
to conventional partial differential equation–based solvers at exascale. This cre-
ates strategic opportunities to adopt these tools to enhance data-driven decision 
making and to integrate them into existing physics-based modeling campaigns.

Unique to DOE’s mission is the requirement to fuse weather prediction with 
additional sensing modalities relevant to national security. For example, nonpro-
liferation and counter-terrorism tasks often rely on combining weather models 
with satellite imagery and other geospatial data. Early industry examples, such as 
Microsoft’s real-time weather foundation models, demonstrate that these models 
can serve as effective multitasking platforms that generalize well to satellite data 
streams and other remote sensing tasks.

Beyond this immediate application, the prevalence of diverse scientific data 
across DOE highlights an opportunity to advance a distinctive form of mul-
timodal learning, extending beyond the text, audio, and video focus common 
in commercial AI. For example, in stockpile stewardship, it is often necessary 
to fuse heterogeneous material characterization data—such as X-ray diffrac-
tion, electron microscopy, user facility measurements, and high-fidelity simula-
tions—with knowledge graphs and other structured sources, including classified 
information. Developing foundation models capable of reasoning across such 
multimodal scientific data streams could establish a unique capability aligned 
with DOE’s national security and scientific missions.

INTEGRATING THE DEPARTMENT OF  
ENERGY SCIENTIFIC SOFTWARE STACK

While large industrial AI companies have deep expertise in first-order op-
timizers, automatic differentiation, and other numerical methods central to ma-
chine learning, DOE remains a global leader in advanced scientific computing, 
including large-scale linear algebra; high-performance numerical solvers; higher-
order, structure-preserving, and large-scale constrained optimization libraries; 
and frameworks for discretizing the partial differential equations that underpin 
scientific simulation. There is a major opportunity to bridge this substantial in-
vestment in foundational scientific software with the next generation of founda-
tion models, whether developed by industry or within DOE itself.

As machine learning was initially applied to scientific problems, there was 
a reluctance within DOE to compete with TensorFlow or PyTorch. At this point, 
libraries are relatively mature, and open-source libraries such as Trilinos could 
serve a valuable role in developing lightweight wrapper libraries to facilitate the 
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interfacing of production codes with LLMs. Several notable DOE codes such as 
MFEM and Albany have begun exposing automatic differentiation and adjoint 
calculations in a manner that could be accessed by an LLM (MFEM n.d.; Salin-
ger et al. 2016). DOE has invested in higher-level runtime systems that simplify 
the programming of distributed-memory environments. Frameworks such as 
Charm++/AMPI (Kale and Krishnan 1993), Legion (Bauer et al. 2012), UPC++ 
(Bachan et al. 2019), Global Arrays (Nieplocha et al. 1994), and HPX (Kaiser 
et al. 2014) provide hardware-agnostic abstractions for communication, load 
balancing, and task scheduling in parallel computing; similar abstractions that 
facilitate the scheduling of agentic actions or simulation queries for large-scale 
MPI-style, either as directed by or to build a foundation model, would have value.

A primary function of foundation models is to compress the large corpus 
into a latent representation that supports multiple downstream tasks. DOE may 
play a valuable role developing open-source software tools supporting scientific 
inference from a pretrained latent space. For example, although machine-learned 
potentials have been widely successful, their implementation within production 
molecular dynamics simulators such as LAMMPS is often ad hoc, just-in-time–
based, and suboptimal in performance. There is a need for a universal library that 
can distill these classes of data-driven computational kernels into performant, po-
tentially Kokkos-accelerated modules that can be readily deployed in production 
codes. This opportunity extends beyond LAMMPS to any simulator that would 
extract data-driven models from a central, pretrained foundation model.

AGENTIC ARTIFICIAL INTELLIGENCE

In the past year, agentic AI has surged as a means of using LLMs to launch 
external agents to explore hypotheses or improve/verify responses. DOE main-
tains a collective $407 million per year in open-source code (Shrivastava and 
Korkmaz 2024), with the Exascale Computing Project alone representing 70 
distinct scientific codebases. There is a unique opportunity for DOE to expose 
automatic differentiation “hooks” in their open-source libraries to allow LLMs 
to couple directly to production codes, integrating robust numerical prediction 
into the training process. This would allow LLMs to both perform simulation and 
calculate loss functions to support holistic end-to-end training through reliable 
and mature DOE simulators. Several DOE codes already expose adjoints in this 
manner (see, e.g., MFEM), and so the initial software infrastructure is already 
in place. In addition to driving simulators in an agentic manner, there is also an 
opportunity to drive user facilities or autonomous “self-driving” laboratories that 
generate and process multimodal data. Although multimodal learning is of mas-
sive interest to industry, the breadth of modalities, in simulation (ranging from ab 
initio density functional theory to exascale Earth system models), in experiments 
(from tabletop X-ray measurements to massive user facilities), and into text (in 
the form of technical reports and classified journals) dwarfs the more focused 
efforts likely to be conducted by industry. 
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Conclusion 4-2: DOE is uniquely positioned to shape the future of AI-
driven science. Material informatics and near-autonomous scientific 
platforms highlight the power of combining curated experimental data, 
simulation, and advanced AI to accelerate discovery. Federated comput-
ing and facility integration extend this vision by enabling distributed use 
of DOE’s infrastructure. 

The curation and integration of specialized knowledge coupled with emerg-
ing multimodal and agentic AI approaches underscore the importance of preserv-
ing expertise, reasoning across diverse scientific data streams, and directly linking 
foundation models to DOE’s mature simulation ecosystem.

Recommendation 4-2: The Department of Energy should both mod-
ernize existing infrastructure and invest in new infrastructure to 
generate, curate, and facilitate the large data corpus necessary to 
build a scientific foundation model, including simulations to create 
data, high-throughput and/or autonomous experimental facilities, 
and facilities to host data. Additionally, they should create inter-
faces (e.g., agentic, retrieval-augmented generation tools) through 
which large foundational models may easily access these sources. 
A successful strategy will provide holistic access to multimodal or 
heterogeneous infrastructure across the entire DOE complex, miti-
gating the “stove-piping” of assets between different laboratories 
or departments.

TALENT RETENTION

The success of any DOE-wide foundation model initiative depends entirely 
on attracting and retaining top AI talent. This presents significant challenges, 
primarily due to intense competition from the private sector. Industry has rapidly 
accelerated its AI hiring, evidenced by a 21 percent increase in AI-related job 
postings from 2018 to 2023. Critically, employers are now prioritizing practical 
skill-based hiring over formal degrees. With AI competencies commanding a 23 
percent wage premium—a value surpassing that of degrees up to the doctoral 
level (Bone et al. 2025)—and industry offering higher compensation and excep-
tional working conditions, DOE will need to compete for this essential expertise.

An added challenge that DOE faces arises from slow funding cycles that 
make it difficult to keep up with the pace of innovation in industry. Traditional 
DOE funding cycles, often spanning multiple years, can impede the rapid de-
velopment and deployment of AI technologies. In contrast, industry laboratories 
frequently operate with more agile funding mechanisms, enabling quicker adapta-
tion to emerging AI advancements. Within the National Laboratories, laboratory-
directed research and development (LDRD)-based funding leads to a minimum 
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1-year lag to starting a project, which could be slow to the point of missing a 
major development completely. Furthermore, industry often has the resources to 
allow teams to solely focus on a single large-scale project, often for long periods 
on the order of years. To bridge this gap, DOE could consider implementing more 
flexible funding models, such as rolling proposals or seed grants, to accelerate AI 
research and development. DOE’s Office of Science maintains a number of large 
multi-institutional initiatives that may provide a vehicle to adapt more flexibly, 
for example, a Scientific Discovery Through Advanced Computing center, which 
has a broad enough scope and a sufficiently long-time horizon to adapt to rapid 
developments in the field while maintaining accountability to taxpayers. 

To foster an environment conducive to AI innovation, DOE needs to cultivate 
a research culture that emphasizes flexibility and speed. This includes adopting 
performance metrics that prioritize real-world impacts, such as model robustness 
and deployment success, over traditional academic outputs such as publications. 
Encouraging interdisciplinary collaboration and providing recognition for contri-
butions to AI systems and infrastructure can further enhance DOE’s competitive-
ness in the AI research landscape. 

Despite challenges, DOE possesses unique strengths that can be leveraged to 
advance AI research and attract talent. DOE engages in mission-driven research; 
DOE’s focus on societal challenges, such as clean energy and national security, 
attracts scientists motivated by purpose-driven work. Furthermore, in contrast 
to industry, long-term career tracks within DOE foster sustained development 
of complex AI systems integrated with physical models. Finally, collaborations 
between physicists, chemists, computer scientists, and engineers enable the de-
velopment of AI models that require domain-aware reasoning. 

DOE’s infrastructure and expertise provide a solid foundation for AI-driven 
scientific discovery. Decades of investment in physics-based simulation codes 
offer valuable assets that AI can learn from or emulate. Robust, scalable software 
platforms developed by DOE laboratories can power hybrid workflows combin-
ing symbolic and neural reasoning. Scientific data sets from large-scale experi-
ments serve as high-value training and validation sources for domain-specific 
AI. Furthermore, DOE’s supercomputers and user facilities provide superior 
computing capabilities and experimental data for training foundation models and 
deploying AI-augmented simulations. 

A further issue is how DOE can best collaborate with universities. Building 
a strong academic pipeline is crucial for long-term AI capability in DOE. Some 
possible avenues for encouraging further collaboration with universities include: 

•	 Embedding graduate students and postdocs in national laboratories with 
co-mentorship from university faculty and lab researchers can strengthen 
the AI talent pipeline. 
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•	 Establishing joint DOE–university institutes focused on the intersec-
tion of AI and specific DOE mission areas can foster collaboration and 
innovation. 

•	 Supporting joint national laboratory and university centers, with poten-
tial industry support, that focus on AI and physical sciences can enhance 
DOE’s research capabilities. 

•	 Facilitating easier transitions for university AI experts collaborating with 
DOE laboratories can promote knowledge exchange and innovation.

Conclusion 4-3: DOE struggles to compete with the private sector for 
AI talent due to lower salaries and slow, traditional funding cycles. 
However, DOE’s unique strengths, such as its mission-driven work, 
long-term career paths, and powerful supercomputing infrastructure, 
can be leveraged to attract talent. Building a strong academic pipeline 
through closer collaboration with universities is also essential for its 
long-term success.

Recommendation 4-3: To maintain a top-tier workforce, the De-
partment of Energy (DOE) should design leadership-scale scientific 
research programs and provide staff with opportunities to rap-
idly adapt to a quickly evolving technological landscape. To attract 
early-career scientists, DOE should be perceived as the best place 
to become a leader in scientific machine learning; while industry 
may lead large language model space, the unique access to state-
of-the-art science can attract top talent. To be competitive with 
large-scale development efforts in industry, it is important to avoid 
fracturing of scientists’ time and attention. We recommend that 
DOE should create mechanisms by which medium through large 
teams can mount coordinated, focused efforts targeting mission-
critical developments in fundamental research into, and applica-
tions of, foundation models for science.

UNIFIED DATA REPOSITORY

DOE provides several open-source data repositories that serve the research 
community. These repositories are organized in a fragmented fashion across 
DOE subdomains (Table 4-1), each hosting heterogeneous data formats and sizes 
without a unified access interface. Many smaller data sets—often the output 
of single-investigator LDRD projects—reside on external curation platforms, 
further fragmenting access. Automated classifiers must inspect each data set for 
export-control restrictions, adding another layer of procedural complexity. Col-
lected data sets typically represent final project outputs and omit intermediate 
simulations, classified results, and the metadata and documentation generated 
during data production.
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DOE can address these challenges by establishing a centralized data center 
on the scale of its flagship supercomputing facilities. Such a center would offer 
extensive storage infrastructure, dedicated curation staff, and clear governance 
policies to enforce a consistent application programming interface for data host-
ing and retrieval for multimodal scientific data sets. A centralized data center 
could also help create interfaces not only to access data, but also to access 
potential foundation models. The easy access to the foundation models could 
be crucial for the scientific discovery cycle. It would also support research into 
best practices for data curation and the development of software tools tailored to 
ingesting large data sets into foundation models.

Conclusion 4-4: Although DOE curates many high-value data sets of 
value for construction of foundation models, they are typically devel-
oped in an ad hoc manner with heterogeneous file formats and data 
curation strategies that currently pose a barrier to high-throughput 
processing of data. Foundation models present a unique opportunity to 
address this issue.

TABLE 4-1  Department of Energy (DOE) Open-Source Data Repositories
Name Description

Open Data Catalog Machine-readable list of all publicly available data sets 
maintained by DOE and its program and staff offices (https://
www.energy.gov/data/articles/open-data-catalog).

DOE Data Explorer 
(OSTI/E-Link)

Portal for DOE-funded science and engineering data (https://
www.osti.gov/dataexplorer).

Materials Data Facility Publication and discovery service for materials data (Blaiszik et 
al. 2016; NETL 2024).

Earth System Grid Federation Archive of climate model output and observations 
(Ananthakrishnan et al. 2007).

Joint Genome Institute Data 
Portal

Genomic and metagenomic data sets for bioenergy research 
(https://data.jgi.doe.gov).

Open Energy Information 
(OpenEI)

Wiki and repository of energy, resource, and policy data (https://
openei.org/wiki/Main_Page).

Wind Integration National 
Dataset Toolkit

High-resolution wind power meteorology and output data (Draxl 
et al. 2015).

NREL Data Catalog Photovoltaic system performance data (https://openei.org/wiki/
PVDAQ).

NOTE: NETL = National Energy Technology Laboratory; NREL = National Renewable Energy 
Laboratory.
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Recommendation 4-4: To increase the success of future foundation 
models for science, the Department of Energy should invest in large-
scale data user facilities (classified and unclassified), leveraged by 
artificial intelligence’s growing capability to interpret heterogeneous 
scientific data, similar to the successes experienced with previous 
investments in supercomputers, and open-source scientific comput-
ing libraries. 
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5

Foundation Model Challenges

SOURCES OF CHALLENGES

Applying foundation models within the Department of Energy’s (DOE’s) 
missions presents a multilayered set of technical and operational challenges. 
These models, which emerged from success in domains such as natural language 
processing and vision, struggle to transfer directly into DOE’s computational 
science workflows that require physical consistency, mesh- or geometry-aware 
representations, and scalable inference across high-dimensional, multiscale par-
tial differential equation systems (Pyzer-Knapp et al. 2025). DOE applications 
such as reactor modeling, Earth systems prediction, and fusion simulation involve 
high-dimensional, spatiotemporal fields with millions to trillions of values per in-
stance, placing extreme demands on memory, computational throughput, and ar-
chitectural efficiency. The absence of embedded physical constraints in standard 
foundation model architectures, combined with stochastic training dynamics, 
emergent capabilities, and nondeterministic behaviors, hinders scientific reli-
ability, complicates verification, and reduces confidence in high-stakes scenarios 
(Babuska and Oden 2004). The core promise of foundation models, pretraining 
across diverse tasks and modalities to enable broad generalization, is precisely 
what introduces new risks in scientific domains where accuracy, stability, and 
reproducibility are paramount (Palmer and Stevens 2019). Scientific foundation 
models are expected to extrapolate across physical regimes, boundary conditions, 
and domain geometries with minimal adaptation, yet this capability remains 
largely aspirational in practice. Fine-tuning on downstream scientific problems 
often proves computationally expensive, brittle, and sensitive to discretization 
artifacts, with performance degrading when faced with domain shifts or mesh 
changes (Radova et al. 2025). The lack of standardized data sets for DOE-rele-
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vant systems further hampers reproducibility, robust benchmarking, and model 
transferability across simulation codes or physical domains. DOE use cases also 
demand task interactivity and feedback integration, such as real-time control of 
plasma confinement or anomaly detection in sensor networks. These agentic and 
dynamic workflows are not typically reflected in the static pretraining distribu-
tions used to develop generalist foundation models, which are often drawn from 
web-scale or simulation-agnostic corpora. Consequently, adapting pretrained 
foundation models for DOE environments requires techniques such as domain-
specific simulation environments, reward-informed data-relabeling pipelines, 
digital twin infrastructure, and architectural modifications that encode physical 
priors or conservation laws (Yuan et al. 2025). Even in data-rich domains, the 
absence of reward structures, labeled physics, or causal annotations limits the 
ability to drive meaningful adaptation. In addition, the need to accommodate 
heterogeneous data types, such as text, sensor streams, video, and mesh-based 
simulations, introduces architectural challenges in designing foundation models 
that can jointly align, fuse, and validate across disparate modalities while preserv-
ing spatiotemporal and physical coherence (Mukherjee et al. 2025).

Collaboration with industry introduces additional constraints. Proprietary 
model weights, restricted data access, and closed-source infrastructure often 
prevent rigorous verification, validation, and uncertainty quantification (VVUQ) 
and reproducibility practices, especially when security, transparency, or audit-
ability are required.

Finally, the energy and computational costs of training and adapting large 
foundation models, particularly across diverse scientific regimes, impose signifi-
cant burdens on DOE facilities (Koch et al. 2025). Addressing these challenges 
will require coordinated investments in energy-efficient and sustainable foun-
dation model development, physically informed architectures, domain-specific 
VVUQ methodologies, and infrastructure for transparent, traceable, and repro-
ducible deployment across DOE’s science and national security missions (Tera-
nishi et al. 2025).

Artificial Intelligence Assurance, Test, and Evaluation 

AI assurance for foundation models refers to the evidence-based process of 
demonstrating that a system is reproducible, auditable, and fit for purpose in DOE 
mission settings. Assurance is tied to acceptance criteria declared in advance for 
a specific task and operating regime, and results must be repeatable across soft-
ware environments and hardware platforms. It is not a single evaluation step but 
a continuous life-cycle discipline spanning model conception, training, deploy-
ment, and requalification. This framing echoes emerging life-cycle models for 
trustworthy AI (Afroogh et al. 2024) and conceptual roadmaps that advocate a 
“never trust, always verify” paradigm for AI systems (Tidjon and Khomh 2022).

At the requirements stage, DOE programs should specify quantitative criteria 
for accuracy, stability, and latency. Verification must enforce conformance with 
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physical conservation, invariants, boundary, and unit consistency, and portabil-
ity across meshes and geometries using both synthetic and experimental data. 
Validation extends beyond simulation comparison to include closed-loop testing 
with controllers or optimizers in the loop, where stability margins, constraint-
violation rates, and worst-case performance are directly measured. Recent assur-
ance frameworks emphasize that validation should be tied to empirical conditions 
of use, not only static benchmarks (Bloomfield and Rushby 2024).

Uncertainty quantification is decision linked: predictive coverage should 
be calibrated against DOE-relevant distributions, and provenance must trace 
uncertainty sources to modalities, training stages, and preprocessing steps. To 
support this, foundation models must carry reproducibility dossiers documenting 
data set lineage, hash-verified snapshots, training seeds, hardware and software 
stacks, and code commits. Determinism budgets should quantify acceptable drift 
across multinode and mixed-precision runs. This aligns with recent calls for 
comprehensive trustworthiness assessment across robustness, transparency, and 
accountability dimensions (Kowald et al. 2024).

Deployment in high-consequence settings such as fusion control or grid 
operations requires staged test-beds. Models first undergo software-in-the-loop 
trials with high-fidelity simulators, advance to hardware-in-the-loop testing on 
the target control stack, and finally, operate in shadow mode with full telemetry 
in the live environment. Full deployment proceeds only if predeclared accep-
tance criteria are satisfied in the simulator and hardware-in-the-loop stages; any 
modification to data, model, controller, or operating envelope triggers mandatory 
requalification. This staged life cycle reflects broader proposals for trustworthy 
and safe AI architecture (Chen et al. 2024) and ensures that DOE’s mission ap-
plications meet safety and reliability requirements before operational use.

Operational safeguards must be integral to the assurance framework. These 
include watchdogs and admission control for computing resources, fixed profile 
execution bounds, and certified fallback controllers. Out-of-distribution detection 
should be paired with safe degradation policies such as hold-last-good. Where 
counterfactual reasoning is central, training should be coupled with interventional 
simulators, and validation should include intervention suites and replay of histori-
cal logs. The importance of embedding such protections has been emphasized 
in the broader AI governance literature (Blau et al. 2024) and in proposals for 
architectural frameworks for AI safety (Chen et al. 2024).

By consolidating VVUQ, reproducibility, robustness testing, and staged 
deployment into a unified life cycle, DOE can ensure that foundation models are 
evaluated with the same rigor long applied to scientific codes. 

Verification

Verification ensures that foundation models are implemented correctly and 
yield outputs consistent with physical principles (Gurieva et al. 2022). For sci-
entific applications at DOE scale, this requires more than standard software test-
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ing. The size and complexity of modern foundation models, which often contain 
billions of parameters and are applied to high-dimensional spatiotemporal fields, 
demand modular verification strategies that address emergent behaviors, stochas-
tic dynamics, and numerical stability. This is especially critical for systems where 
any violation of conservation laws or symmetry principles may have safety or 
operational consequences.

Some DOE applications require inference that is not only accurate but also 
predictable in timing and auditable in operation so that control and protection 
functions consistently meet strict deadlines. For these settings, foundation model 
pipelines must be engineered to satisfy fixed execution budgets, deliver deter-
ministic behavior under load, and fail safely when assumptions are violated. 
A practical assurance profile includes predictable worst-case execution time 
established through fixed-profile scheduling on the target platform, hardware-in-
the-loop staging before any field activation, and phased deployment that begins 
in shadow mode with full telemetry before actuation authority is granted. Safety 
must be ensured through conservative fallback controllers when timing bounds 
or input validity checks are not met. Continuous audit trails should capture tim-
ing, inputs, intermediate states, and actions to ensure full traceability. Additional 
safeguards include admission control for computing resources, watchdogs, and 
out-of-distribution input tests that automatically trigger safe states. Acceptance 
criteria must demonstrate that closed-loop stability and protection margins are 
preserved across the specified disturbance set and operating envelope. Scientific 
data sets further complicate the task. Inputs such as three-dimensional mesh-
based simulation fields often contain trillions of values, overwhelming conven-
tional memory and computing pipelines. Differences introduced by stochastic 
initialization, hardware platforms, or software libraries can lead to inconsistent 
model outputs, undermining reproducibility and making fault tracing difficult 
(Barton et al. 2022). Most foundation model architectures, especially transformer-
based models, are trained on data sets with limited fidelity to physical systems, 
simulation structure, or simulation-specific structure. As a result, it is difficult 
to determine whether their predictions honor physical realism, particularly in 
applications such as turbulent flow or magnetohydrodynamics. These issues are 
compounded when industry partnerships restrict access to pretrained weights or 
codebases, limiting transparency and reproducibility (Yang et al. 2020).

Sustainability is another key concern. Verification of large foundation models 
across multiple scientific domains often involves retraining or revalidation, which 
incur high energy and computational costs (Han et al. 2023). As model sizes 
continue to grow, DOE evaluates energy-efficient alternatives and sustainability 
metrics to ensure that foundation model verification remains viable at scale.

Addressing these challenges requires adopting modular model designs that 
support isolated testing and interpretation of internal components. This approach 
is already used in several scientific and engineering pipelines. In operator-learn-
ing architectures (Hossain et al. 2025; Kobayashi and Alam 2024; Kobayashi et 
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al. 2025; Lu et al. 2021), the branch-trunk decomposition (e.g., multiple-input 
operator nets) cleanly separates an encoder branch from a trunk coordinate 
network, allowing the encoder to be frozen while the trunk is unit-tested on 
synthetic or gold-standard fields. Neural operator methods with adapter layers 
create plug-in modules that can be swapped or ablated while holding the core 
operator architecture fixed (e.g., modular operator learning approaches such as 
multioperator architecture; Zhang 2024). In hybrid modeling, learned subgrid 
closures or surrogate modules are routinely inserted into traditional solvers (e.g., 
turbulence closures in fluid or atmospheric codes) so that the learned module can 
be validated separately under canonical flow conditions before being integrated 
into the full solver. (See survey of machine learning closure modeling in turbu-
lence; Beck and Kurz 2021.) 

Retrieval-augmented pipelines also already evaluate retriever and predictor 
modules separately, enabling stress tests of the knowledge interface. Mixture-of-
experts (MoE) and routing architectures expose per-expert behavior that can be 
profiled with targeted inputs and compared against reference cases (e.g., recent 
MoE gating models showing analyzable expert routing; Nabian and Choudhry 
2025).

In practice, isolation is enforced using stable interfaces and test harnesses: 
strict component contracts for inputs and outputs, synthetic data generators to 
probe edge-case behavior, golden tests on curated benchmarks, and swap-in or 
swap-out experiments that leave the surrounding system unchanged except for the 
module under test. These patterns demonstrate that isolated testing and interpre-
tation are not only possible but already in use in modern scientific and machine 
learning systems, and they can be extended to foundation models intended for 
DOE mission-critical deployment.

 Benchmarking across DOE high-performance computing (HPC) environ-
ments can reduce platform-induced variability, while federated test-beds enable 
collaboration with industry partners without compromising sensitive intellectual 
property. Verification efforts should be tightly integrated with comprehensive 
uncertainty documentation, capturing both aleatory and epistemic components 
to support robust deployment decisions. To ensure that foundation models are 
viable for science and engineering, users must treat verification as a foundational 
component of trust, aligned with sustainability and reproducibility objectives 
(Mahmood et al. 2024).

Validation

Validation assesses whether foundation model outputs faithfully reflect real-
world behavior, particularly in mission-critical DOE applications such as reactor 
dynamics, grid stability, and materials performance (Wong et al. 2023). This 
requires systematic comparison of foundation model predictions against experi-
mental observations and high-fidelity simulations (Hsieh et al. 2021), ensuring 
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alignment with physical laws and constraints, such as energy conservation, con-
tinuity, and thermodynamic consistency. For complex systems such as microreac-
tors, where safety margins are narrow and data availability is limited, validation 
must account for data quality, physical plausibility, and generalizability.

High-quality, representative data sets are foundational to foundation model 
validation. Yet DOE domains often contend with sparse, noisy, or biased data, 
especially from heterogeneous physical systems such as renewable energy grids 
or coupled fluid–structure systems. These challenges are compounded by a lack 
of standardized benchmarks and by the diverse modalities and formats typical 
of scientific simulations, including scalar, vector, and tensor fields. Furthermore, 
the geometric dependence of DOE simulations introduces portability concerns, 
as foundation models trained on one discretization may fail when applied to dif-
ferent meshes or boundary conditions (Brunton et al. 2016; Moscoso et al. 2020).

Validating large-scale, pretrained, multimodal foundation models also en-
tails a significant computational burden. Scientific problems in Earth systems, 
fusion, or subsurface modeling require validation across spatiotemporal domains 
and governing equations, often with high-dimensional input–output mappings. 
Although foundation models are designed to generalize across tasks and scale 
with data volume, verifying their consistency across multiple physical regimes 
remains a formidable task (Selin et al. 2024).

To address these issues, DOE can leverage a layered validation strategy. 
First, experimental cross-validation using real-world data from national user 
facilities, such as the Advanced Test Reactor, the Advanced Photon Source, or 
the National Renewable Energy Laboratory, anchors foundation model outputs to 
physical reality. Second, physics-based benchmarks, such as Monte Carlo neutron 
transport codes in ExaSMR or SCALE, serve as reference standards for evaluat-
ing foundation model fidelity. Where empirical data are sparse, synthetic data 
sets from validated simulators can support surrogate validation, provided they 
are curated with traceable metadata and grounded in domain-specific governing 
equations. For time-critical systems such as fusion control or grid stabilization, 
validation must also extend to closed-loop behaviors, ensuring stability and 
performance under uncertainty (Prinn 2013). In turbulence and Earth systems 
modeling, for example, learned subgrid closures have been validated first on ca-
nonical benchmark flows before being integrated into general circulation models, 
demonstrating that modular surrogate validation is feasible in practice (Beck and 
Kurz 2021; Hassanian et al. 2025). In nuclear engineering, Monte Carlo neutron 
transport has long served as a reference standard against which lower-fidelity 
or surrogate models are calibrated and tested (Leppänen et al. 2015). Similarly, 
synthetic data from validated simulators are already widely used in fusion and 
materials science to supplement scarce experimental observations, provided that 
the synthetic sets carry documented provenance and are grounded in governing 
equations (Kobayashi et al. 2025). Recent surrogate modeling studies further 
reinforce this layered approach, including climate emulation with graph neural 
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networks (Potter et al. 2024), coastal ocean circulation surrogates with physics-
based constraints (Xu et al. 2024), adaptive implicit neural representations for 
high-fidelity scientific simulations (Li et al. 2025), and surrogate-based Bayes-
ian calibration frameworks for climate models (Holthuijzen et al. 2025). Mesh 
portability challenges have been addressed using graph neural network surrogates 
on unstructured grids (Shi et al. 2022), and DOE’s Oak Ridge National Labora-
tory has employed surrogate-based calibration of the E3SM atmosphere model 
(Yarger et al. 2024). Physics-informed surrogate models have also been demon-
strated for groundwater transport forecasting (Meray et al. 2024), while diffusion-
based surrogates are emerging for regional climate and sea-ice simulations (Finn 
et al. 2024). These precedents indicate that the layered validation strategy is not 
speculative but reflects a growing body of practice across multiple domains.

Importantly, validation is not a binary pass/fail exercise. If a foundation 
model is shown to be invalid for a given regime, it is not discarded wholesale; 
instead, its use is confined to conditions where validation evidence is sufficient. In 
DOE mission settings, this means restricting the model to advisory or exploratory 
roles until retraining, fine-tuning, or hybridization with physics solvers restores 
fidelity. Models may also be demoted to shadow-mode operation, where outputs 
are logged but not acted upon until requalification criteria are met. This mirrors 
the way traditional simulation codes undergo continuous VVUQ cycles rather 
than one-time certification. Thus, the layered validation framework both builds 
on prior evidence and provides structured pathways for handling failure, ensuring 
that only models with verified domain fidelity are elevated to operational use. 

Uncertainty Quantification

Uncertainty Quantification (UQ) is indispensable for the trustworthy use of 
foundation models in DOE applications (Bilbrey et al. 2025). Unlike traditional 
simulators with interpretable inputs and outputs, foundation models pretrained 
on diverse tasks and modalities behave as black box approximators whose out-
puts are not explicitly governed by physical laws. This creates deep challenges 
for UQ, as error sources can propagate across input types, scientific contexts, 
or temporal regimes without clear attribution or traceability (Wang et al. 2023). 
Validation cannot rely on predictive fit alone when DOE decisions depend on 
counterfactuals and operator interventions. Foundation models must preserve 
causal structure under changes in operating point, control actions, and boundary 
conditions. Meeting this challenge requires integrating causal formalisms and 
intervention-based testing into both training and validation. Practical approaches 
include incorporating physics-based causal graphs or invariance penalties during 
training, pairing learning with interventional simulators that generate policy-
relevant counterfactuals, and extending validation to intervention suites derived 
from simulation campaigns and historical logs. Evidence of robustness should 
include not just predictive accuracy but counterfactual fidelity, invariance under 
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admissible interventions, and stability when the model is exercised in closed-loop 
control settings. Recognizing causal and interventional robustness as a distinct 
challenge ensures that DOE foundation models are capable of supporting decision 
making in safety-critical and policy-relevant environments.

Pretrained foundation models used in DOE settings must often integrate 
sparse, noisy, or out-of-distribution data to support scientific inference (Moro 
et al. 2025). This introduces layered uncertainties: aleatory uncertainty from 
inherent randomness, epistemic uncertainty from incomplete knowledge, and 
structural uncertainty arising due to domain shift between pretraining and deploy-
ment (Moscoso et al. 2020). For example, a foundation model trained on geo-
physical sensor networks may fail to generalize to grid control scenarios if rare 
but critical events are underrepresented. Without explicit UQ, narrow predictive 
intervals may mask failure risks that compromise safety and mission assurance. 
Multimodal foundation models compound this complexity. Architectures that 
integrate text, telemetry, simulation output, and high-resolution spatiotemporal 
fields confront alignment and calibration issues unique to each data type. Classi-
cal UQ techniques, which assume homogeneity of inputs and well-defined likeli-
hoods, are poorly suited to these heterogeneous scientific settings. Pretraining on 
unlabeled corpora also introduces ambiguity about data provenance, fidelity, and 
representativeness, weakening the basis for uncertainty estimation in downstream 
DOE applications. 

DOE applications demand not only accurate predictions but transparent 
characterization of uncertainty across heterogeneous data sources. Foundation 
models must therefore estimate and report uncertainty per modality before com-
posing it at the task level. Each input class, whether text, point sensors, images, 
or simulation fields, requires its own calibrated noise model and uncertainty head, 
with ensembles or Bayesian layers providing epistemic estimates of model un-
certainty. Out-of-distribution detection should operate at both the single-modality 
and joint levels to flag inputs outside training distributions. Coverage guarantees 
must be calibrated with conformal or likelihood-free methods on DOE-relevant 
distributions to ensure reliability. Every prediction should carry a structured 
uncertainty record that attributes contributions to specific modalities, training 
stages, and preprocessing steps. Such provenance enables users, operators, and 
regulators to understand not only the magnitude of uncertainty but its origin, 
providing the transparency required for deployment in high-consequence DOE 
missions. For DOE’s mission-critical use, uncertainty must not only be quanti-
fied but also interpretable to domain experts and regulators (NEA 2016). While 
ensemble methods and Bayesian deep learning offer statistical tools, they do not 
fully meet DOE’s high-dimensional and context-sensitive requirements (Fort et 
al. 2020). In domains such as fusion energy or nuclear thermal hydraulics, UQ 
must resolve sensitivity to mesh discretization, boundary geometry, and initial 
condition variability (Wang et al. 2022). UQ must be integrated into foundation 
model pipelines from the outset, rather than retrofitted postdeployment. Early 
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inclusion allows recursive calibration, scenario-based testing, and adaptive trust 
assessment as models are transferred across domains or facility environments. 

For DOE’s mission-critical settings, predictive fit alone is insufficient. Deci-
sion support often requires counterfactual reasoning: how a system responds un-
der interventions such as operator actions, set-point changes, or equipment faults. 
Foundation models must therefore be validated not just on observed data but on 
their behavior under interventions and in closed-loop interaction with controllers. 
Integrating causal robustness into DOE’s assurance framework requires physics-
informed causal graphs or invariance penalties during training, coupled with 
interventional simulators that generate policy-relevant counterfactuals. Validation 
should extend to structured intervention suites built from simulations and histori-
cal logs. Pairing uncertainty quantification with causal checks during pretraining 
and fine-tuning enables early rejection of models that may replicate passively 
observed data but collapse under perturbation. Evidence of robustness must 
include counterfactual fidelity, invariance under admissible interventions, and 
stability when embedded in control loops. Recognizing causal and interventional 
robustness as a distinct challenge ensures that foundation models can support 
DOE operators and regulators with trustworthy, decision-relevant behavior. This 
alignment with validation and reproducibility workflows gives DOE decision 
makers a reliable basis for quantifying and managing uncertainty in operational 
systems (Rudin 2019), with test-beds such as DOE’s Nuclear Energy Advanced 
Modeling and Simulation program (NEAMS n.d.) and Office of Cybersecurity, 
Energy Security, and Emergency Response (DOE n.d.) offering structured plat-
forms for future foundation model–UQ integration).

Ultimately, general-purpose foundation models are not viable for deployment 
in DOE’s regulatory and high-risk environments without multimodal, physics-
aware, and domain-transferable UQ mechanisms that match the complexity and 
societal stakes of DOE science. Although foundation models offer compelling 
new capabilities, DOE cannot assume that existing VVUQ practices for tradi-
tional simulation codes apply directly. At present, foundation models should 
be pursued as research assets whose deployment in high-consequence settings 
depends on the creation of assurance frameworks. This means that near-term use 
is appropriate for exploratory science, surrogate modeling, and advisory applica-
tions, but operational roles in control, protection, or licensing should await the 
development of DOE-specific VVUQ, reproducibility, and assurance standards. 
Thus, the immediate recommendation is not to prohibit use but to invest in 
dedicated research that adapts and extends VVUQ methods to the foundation 
model context, establishing the evidence base required for safe and certifiable 
deployment.

Conclusion 5-1: VVUQ methods analogous to those for traditional 
computational modeling do not exist for, or map directly onto, founda-
tion models.
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REPRODUCIBILITY

Reproducibility is the ability to replicate results under consistent conditions, 
a foundational requirement for scientific integrity and model trustworthiness. In 
the context of foundation models, especially those pretrained across heteroge-
neous data modalities and designed for cross-task generalization, reproducibility 
becomes significantly more complex. These models are often trained on mas-
sive, uncurated data sets, under evolving software environments and stochastic 
training routines (Laine et al. 2021). Such variability introduces silent failure 
modes that can undermine reliability in DOE’s high-stakes domains (Tian et al. 
2018), where model outputs may influence nuclear safety evaluations, advanced 
material qualification, or infrastructure resilience planning (Wang et al. 2025). 
Unlike narrowly scoped machine learning models, foundation models function as 
multipurpose, continuously evolving systems. Their ability to generalize across 
modalities (e.g., text, simulation data, and sensor fields) and across tasks intro-
duces deeper reproducibility risks. The same model may be applied to subchannel 
thermal-hydraulics in one instance and to geospatial risk mapping in another, 
with minimal retraining. Without rigorous documentation of pretraining data sets, 
transfer learning decisions, and model evolution, the provenance of any single 
prediction becomes difficult to verify or audit. Moreover, generalist models often 
operate with latent knowledge acquired during pretraining stages that are difficult 
to retrace or validate (Pyzer-Knapp et al. 2025).

In DOE contexts, these concerns are not academic. Reproducibility is a 
precondition for regulatory acceptance, operational deployment, and scientific 
validation (Allison et al. 2018). Yet, three critical barriers persist. First, nonde-
terminism due to random weight initialization, floating-point discrepancies, and 
hardware variability can yield different outputs for the same inputs, especially 
when dealing with distributed training across heterogeneous platforms (Allison 
et al. 2018). Second, data and code access are often restricted in national secu-
rity or proprietary collaborations, making external replication difficult. Third, 
inconsistent training practices (e.g., undocumented hyperparameters, varying data 
preprocessing pipelines, or ad hoc fine-tuning) introduce methodological drift 
across teams and institutions (Nichols et al. 2021).

Addressing these challenges requires intentional infrastructure and cultural 
shifts. Standardized computing environments, reproducible pipelines using fixed 
seeds and version-controlled dependencies, and MLOps tooling for experiment 
lineage must become baseline practices (Nature.com 2021). DOE is uniquely 
positioned to lead here, leveraging its HPC systems and scientific workflow 
infrastructure to enforce deterministic model training and versioned data sets. 
Open science policies, where feasible, should promote model card documenta-
tion, training log archival, and reproducibility benchmarks. In secure settings, 
controlled-access reproducibility testbeds can support internal verification with-
out exposing sensitive materials. Ultimately, the reproducibility of foundation 
models in science depends on shared codebases, fixed sources of randomness, 
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and acknowledging that foundation models are not static endpoints but evolving, 
reusable artifacts (Nichols et al. 2021). Reproducibility must account for how a 
model was trained on what data, for which task, and under which assumptions, 
while enabling traceable, auditable reuse across new applications. This becomes 
especially vital as DOE seeks to deploy general-purpose models across institu-
tions and missions, where latent variability may propagate unnoticed and com-
promise reliability at scale.

In DOE contexts, fit-for-purpose means that a foundation model can be dem-
onstrated to satisfy acceptance criteria that are explicitly matched to the safety, 
security, and reliability demands of its intended use. For exploratory science and 
low-risk applications, this may require only statistical fidelity, convergence under 
refinement, and reproducibility of results across runs and platforms. For regula-
tory or mission-relevant applications, fit-for-purpose raises the bar: models must 
provide deterministic behavior within specified tolerances, complete provenance 
of data and training decisions, and calibrated uncertainty estimates with coverage 
guarantees tied to DOE-relevant distributions. For real-time control or protection 
functions, fit for purpose requires safety certification: predictable execution under 
bounded latency and jitter, validated closed-loop stability margins, and robust 
fallback or fail-safe behavior under disturbance.

Mapping VVUQ to these tiers ensures that DOE foundation models are not 
treated as “one size fits all,” but are qualified according to the risks they man-
age. Tiered acceptance criteria might include (1) reproducibility benchmarks and 
physics-based consistency checks for discovery science; (2) reproducibility dos-
siers, provenance logging, and validated uncertainty quantification for regulatory 
use; and (3) hardware-in-the-loop timing guarantees, interventional validation 
suites, and documented fail-safe policies for mission-critical control. By embed-
ding these criteria, fit for purpose becomes an operational standard rather than a 
rhetorical goal, aligning model trustworthiness with the concrete safety, security, 
and reliability needs of DOE missions.

Conclusion 5-2: VVUQ, interpretability, and reproducibility are critical 
for establishing and maintaining trust in systems that are inherently 
complex, opaque, and increasingly deployed in high-stakes situations. 
Integration of VVUQ into foundation models would lead to increasing 
their trustworthiness, reliability, and fit for purpose, which is essential 
for future scientific discovery and innovation. 

Recommendation 5-1: The Department of Energy (DOE) should 
lead the development of verification, validation, and uncertainty 
quantification frameworks tailored to foundation models, with built-
in support for physical consistency, structured uncertainty quanti-
fication, and reproducible benchmarking in DOE-relevant settings.
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Conclusion 5-3: AI for science will demand more and different physical 
experiments to validate the veracity of the AI predictions. Empirical 
grounding ensures that foundation model outputs reflect physical laws 
and domain-specific behavior. This is especially critical in high-stake 
DOE applications, where simulations alone cannot guarantee correct-
ness, and where physical experiments provide the only definitive test of 
predictive validity.

Recommendation 5-2: In line with Recommendation 4-2, the De-
partment of Energy should place high priority on data collection 
efforts to support reproducible foundation model training and vali-
dation, analogous to traditional efforts in verification, validation, 
and uncertainty quantification.

Recommendation 5-3: The Department of Energy should estab-
lish and enforce standardized protocols and develop benchmarks 
for training, documenting, and reproducing foundation models for 
science and should participate in defining software standards, ad-
dressing randomness, hardware variability, and data access across 
its laboratories and high-performance computing infrastructure.

CHALLENGES OF INDUSTRIAL COLLABORATION 

There are both benefits and risks when collaborating with AI industry lead-
ers. It would benefit DOE to be aware of such benefits and the challenges that 
collaboration might bring. 

•	 Benefits and risks: Industrial partnerships provide DOE with access to 
advanced computational platforms, specialized foundation model ex-
pertise, and scalable software pipelines, accelerating the development 
and deployment of foundation models. A notable example is the Pacific 
Northwest National Laboratory (PNNL)–Microsoft collaboration, which 
leveraged AI and HPC to identify a solid-state electrolyte that reduced 
lithium usage significantly (ScienceAdviser 2024). This collaboration ex-
emplifies the potential of combining domain science with state-of-the-art 
industrial infrastructure. However, such partnerships introduce risks, in-
cluding restricted access to training data and model weights, proprietary 
architectures, and diverging priorities, as industry tends to emphasize 
market-driven goals. DOE, by contrast, upholds a public science and 
national security mission.

•	 Proprietary technology and data sharing: Proprietary models and data 
sets can inhibit VVUQ and reproducibility (Bail 2024). DOE projects 
involving classified or legacy data face additional barriers in adopting or 
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modifying commercial foundation models. Licensing terms, intellectual 
property concerns, and export controls necessitate structured agreements. 
Techniques such as federated learning or secure APIs can mitigate expo-
sure risks but introduce technical and coordination burdens. The PNNL–
Microsoft case illustrates the need for structured interfaces that advance 
science without compromising data integrity or transparency.

•	 Balancing commercial and domain-specific models: The trade-off be-
tween using commercial foundation models (e.g., GPT-5) and developing 
domain-specific models tailored to DOE needs is not trivial. Commercial 
models are often multimodal and efficient but may underperform in ac-
curacy-critical settings such as reactor kinetics or plasma control (Sarker 
2022). By contrast, domain-specific models align better with physical 
constraints but require significant DOE investment in data curation, 
model training, and infrastructure. Hybrid strategies such as fine-tuning 
open-source backbones, incorporating retrieval-based augmentation, or 
adopting tiered licensing can help DOE benefit from commercial models 
while retaining control over mission-sensitive functionality. Recent stud-
ies show that commercial foundation models can provide valuable starting 
points for DOE use when carefully adapted. For example, large language 
models pretrained on general corpora have been successfully fine-tuned 
for domain science tasks such as materials property prediction, protein 
folding, and scientific code generation. In Earth sciences, general vision–
language models have been adapted to remote sensing and climate data 
through retrieval-augmented pipelines, significantly reducing the cost of 
training from scratch. Hybrid strategies that combine open-weight com-
mercial backbones with DOE-curated data have already demonstrated 
improved sample efficiency and reduced infrastructure costs compared 
to fully bespoke models. These precedents indicate that DOE can benefit 
from commercial models not by adopting them wholesale, but by treat-
ing them as adaptable baselines that lower entry costs and accelerate 
deployment while preserving pathways for domain-specific fine-tuning 
and assurance.

•	 Computational and data infrastructure: Cloud-based industrial infrastruc-
ture enables scalable model training and inference but raises concerns 
regarding sustained access, reproducibility, and dependence on vendor-
controlled platforms (Talirz et al. 2020). DOE workflows often rely on 
legacy simulation pipelines and experimental tools, raising interoperabil-
ity challenges when coupled with commercial AI ecosystems. Data cura-
tion remains a core barrier, especially for multimodal pipelines combining 
sensor data, structured simulations, and annotated experimental data sets. 
The energy intensity of foundation model operations also demands green 
computing strategies and life cycle–aware efficiency metrics.
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•	 Ethical considerations: Partnerships must be structured to uphold ethical in-
tegrity. Commercial foundation models may reflect biases from pretraining 
corpora or behave unpredictably in edge-case scientific scenarios (Blau et 
al. 2024). For DOE, safeguarding sensitive data, ensuring equitable outputs, 
and protecting scientific independence are paramount. Governance mecha-
nisms should enforce bias auditing, usage transparency, and responsible 
development aligned with DOE’s public mission.

ETHICS, SAFETY, AND GOVERNANCE 

The following measures frame responsible use and deployment alongside 
validation, verification, and uncertainty quantification.

•	 Dual use and misuse: Foundation models designed for DOE science may 
be repurposed in unintended ways, including adversarial cyber operations, 
weaponization of scientific knowledge, or unauthorized manipulation of 
critical infrastructure. The dual-use dilemma is acute when models trained 
on sensitive nuclear, grid, or materials data are shared without safe-
guards. Addressing this challenge requires clear DOE policies on access 
control, responsible licensing, and the use of model cards that specify 
intended scope and restrictions. Technical safeguards should include 
purpose-binding at the workflow or application programming interface  
level, filters that block disallowed prompts or inference chains, and ap-
proval gates for sensitive features. Usage must be logged with auditable 
traces and rate limits, while misuse red-teaming and rollback procedures 
are incorporated into routine evaluation cycles.

•	 Equity and bias in scientific data: Training data drawn from scientific 
facilities, simulations, or environmental sensors may contain geographic, 
demographic, or institutional biases that propagate into downstream analy-
ses. For instance, models trained primarily on data from well-instrumented 
regions may underperform in underserved or developing contexts, reinforc-
ing inequities. To mitigate these risks, DOE foundation model pipelines 
should embed bias-aware curation practices such as stratified sampling, 
augmentation of underrepresented regimes, and per-modality calibration. 
Coverage maps can identify blind spots, while model cards disclose data 
composition, known biases, and intended scope so that downstream users 
avoid unsupported applications.

•	 Safety of autonomous lab actions: Foundation models integrated into 
experimental workflows, robotics, or closed-loop laboratories introduce 
new safety hazards. Mis-specified objectives, misinterpreted sensor in-
puts, or adversarial perturbations could lead to unsafe behavior in labo-
ratories handling hazardous materials or operating advanced reactors. 
Assurance mechanisms must include explicit interlocks, real-time human 
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supervision, and shadow-mode testing before any autonomous authority 
is granted. Embedding these safeguards ensures that DOE facilities can 
benefit from automation while avoiding catastrophic failures driven by 
misaligned model behavior.

•	 Provenance and accountability: Provenance is critical for ensuring that 
predictions, recommendations, or control actions can be traced back 
through pretraining data, fine-tuning procedures, and deployment environ-
ments. Without auditable lineage, regulators and operators cannot verify 
whether outputs meet DOE’s trust and safety thresholds. Meeting this 
challenge requires reproducibility dossiers and audit trails that capture 
versioned data sets, training seeds, software environments, and interven-
tion histories. Hardware and environment profiles should be logged, with 
signatures or attestations verifying workflow identity. This infrastructure 
enables reproducibility reviews, external audits, and proper attribution 
across institutions.

•	 Energy and sustainability accounting: Training and retraining large-scale 
foundation models consume significant energy, sometimes on the scale of 
DOE’s HPC facilities. Sustainability must therefore become a first-class 
dimension of assurance. DOE should require reporting of energy per 
training run and per inference, prioritize compact adapters and retrieval 
methods over full retraining when possible, and schedule large jobs to 
align with cleaner energy windows where feasible. Hardware selection 
should emphasize meeting latency requirements at the lowest practical 
power cost. By embedding sustainability metrics into VVUQ frameworks, 
DOE can ensure that AI deployment advances a reliable, affordable, and 
clean energy future in line with its mission.

Conclusion 5-4: Partnering of DOE laboratories with industry on AI 
foundation models will require deliberate effort, including flexible 
contracting mechanisms, clear intellectual property agreements, data-
sharing processes, aligning on VVUQ approaches, responsible AI prac-
tices, and a shared understanding of respective missions, objectives, 
and constraints. 

Recommendation 5-4: The Department of Energy should deliber-
ately pursue partnerships with industry and academia to address 
national mission goals, governed by flexible contracts, responsible 
artificial intelligence standards, and alignment on reproducibility, 
verification, validation, and uncertainty quantification approaches 
and data sharing.
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A

Statement of Task

A National Academies of Sciences, Engineering, and Medicine consensus 
study will assess the state of the art in foundation models and their use across 
science research domains relevant to the Department of Energy mission. The 
study will address the following questions:

•	 What are some exemplar use cases where foundation models could impact 
scientific discovery and innovation?

•	 How can foundation models be used in conjunction with traditional mod-
eling, computational, and data science approaches?

•	 How can challenges such as verification, validation, uncertainty quan-
tification, and reproducibility best be addressed to advance trustworthy 
foundation models?

•	 What are priority research areas for investments to advance the develop-
ment and use of foundation models in scientific applications? What are 
the trade-offs in investing in foundation models versus other mathematical 
and computational approaches?
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VIRTUAL OPEN SESSION 

[4 pm]	 Welcome and Introductions	
•	 Dona Crawford, Committee Chair

[4:10 pm] 	 Introduction from Department of Energy (DOE) Advanced 
Scientific Computing Research (ASCR)
•	 Hal Finkel, Director Computational Science Research 

and Partnerships Division, ASCR 
•	 Steven Lee, Program Manager for Applied Mathematics 

and AI

[4:50 pm] 	 Introduction from DOE National Nuclear Security 
Administration
•	 Si Hammond, Federal Program Manager 
•	 Thuc Hoang, Deputy Assistant Deputy Administrator for 

Advanced Simulation and Computing

[5:30 pm] 	 Questions from the Committee
•	 Dona Crawford, Committee Chair

[6 pm] 	 Committee Closed Session
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•	 Committee Reactions

March 6, 2025 [9 am–5 pm PT]
Location: Board Room, Beckman Center, 100 Academy Way, Irvine, CA 
92617

HYBRID OPEN SESSION 

[9 am]	 Welcome and Introductions
•	 Dona Crawford, Committee Chair

[9:20 am] 	 Industry Perspective
	 20-minute presentation from each speaker with 35-minute 

Q&A for the group
	 Petros Koumoutsakos, Moderator

•	 Vivek Natarajan, Google DeepMind
•	 Sebastian Nowozin, Google DeepMind

	 Panel Q&A, moderated by Petros Koumoutsakos 

[10:35 am] 	 Break 

[10:50 am] 	 DOE National Lab Panel 1
	 20-minute presentation from each speaker with 30-minute 

Q&A for the group
	 Syed Bahauddin Alam, Moderator

•	 Earl Lawrence, Los Alamos National Laboratory 
•	 Michael Mahoney, Lawrence Berkeley National 

Laboratory 
•	 Chris Ritter, Idaho National Laboratory 

	 Panel Q&A, moderated by Syed Bahauddin Alam 

[12:20 pm] 	 Lunch 

[1:20 pm] 	 DOE National Lab 2
	 20-minute presentation from each speaker with 40-minute 

Q&A for the group
	 Dan Meiron, Moderator

•	 Hendrik Hamann, Brookhaven National Laboratory
•	 Rick Stevens, Argonne National Laboratory
•	 Georgia Tourassi, Oak Ridge National Laboratory

	 Panel Q&A, moderated by Dan Meiron

[3:00 pm] 	 Break
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[3:20 pm] 	 Applications and Foundation Model Users Panel 1
	 20-minute presentation from each speaker with 40-minute 

Q&A for the group
	 Krishna Garikipati, Moderator

•	 Rémi Lam, Google DeepMind
•	 James Warren, National Institute of Standards and 

Technology
•	 Bin Yu, University of California, Berkeley 

	 Panel Q&A, moderated by Krishna Garikipati

[5:00 pm] 	 Open Session Adjourn

March 7, 2025 [9 am–3 pm PT]
Location: Board Room, Beckman Center, 100 Academy Way, Irvine, CA 
92617

HYBRID OPEN SESSION 

[9 am]	 Welcome Back and Introductions
•	 Dona Crawford, Committee Chair

[9:20 am] 	 Applications and Foundation Model Users Panel 2
	 20-minute presentation from each speaker with 35-minute 

Q&A for the group
	 Marta D’Elia, Moderator

•	 William Collins, Lawrence Berkeley National Laboratory
•	 Ann Speed, Sandia National Laboratories

	 Panel Q&A, moderated by Marta D’Elia

[10:35 am] 	 Break 

[10:50 am] 	 DOE National Lab Panel 3
	 20-minute presentation from each speaker with 30-minute 

Q&A for the group
	 Brian Kulis, Moderator

•	 Kevin Dixon, Sandia National Laboratories
•	 Kelly Rose, National Energy Technology Laboratory 
•	 Brian Spears, Lawrence Livermore National Laboratory 

	 Panel Q&A moderated by Brian Kulis 

[12:20 pm] 	 Lunch—Open Session Adjourns 

[1:20 pm] 	 Closed Committee Session
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May 6, 2025 [1 pm–3 pm ET]

VIRTUAL OPEN SESSION 

[1 pm]	 Welcome and Introductions	
•	 Dona Crawford, Committee Chair

[1:15 pm] 	 Foundation Model Presentation
•	 Omar Ghattas, University of Texas at Austin

[1:45 pm] 	 Committee Closed Session—Open Meeting Adjourns

[3:00 pm] 	 Closed Meeting Adjourns 

May 20, 2025 [4 pm–6 pm ET]

VIRTUAL OPEN SESSION 

[4 pm]	 Welcome and Introductions
•	 Dona Crawford, Committee Chair

[4:15 pm] 	 Foundation Model Presentation
•	 Tzanio Kolev, Lawrence Livermore National Laboratory

[4:45 pm] 	 Committee Closed Session—Open Meeting Adjourns

[6:00 pm] 	 Closed Meeting Adjourn 
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C

Acronyms and Abbreviations

AI	 artificial intelligence
AM	 advanced manufacturing
ASCR	 Advanced Scientific Computing Research

DOE	 Department of Energy

ECP	 Exascale Computing Project

FFRDC	 federally funded research and development center
FNO 	 Fourier neural operator

GPT	 generative pretrained transformer

HPC	 high-performance computing

LDRD	 laboratory-directed research and development
LLM	 large language model
LLNL	 Lawrence Livermore National Laboratory

MoE 	 mixture-of-experts

NNSA	 National Nuclear Security Administration
NREL	 National Renewable Energy Laboratory

PDE	 partial differential equations
PNNL	 Pacific Northwest National Laboratory
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RAG	 retrieval-augmented generation

SSP 	 U.S. Stockpile Stewardship Program

VVUQ	 verification, validation, and uncertainty qualification
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D

Committee Member 
Biographical Information

DONA L. CRAWFORD, Chair, retired as the associate director for computation 
from the Lawrence Livermore National Laboratory (LLNL), where she led the 
laboratory’s high-performance computing efforts. In that capacity, Crawford was 
responsible for the development and deployment of an integrated computing 
environment for petascale simulations of complex physical phenomena. Prior 
to her LLNL appointment in 2001, Crawford was with Sandia National Labo-
ratories since 1976 serving on many leadership projects including the Acceler-
ated Strategic Computing Initiative and the Nuclear Weapons Strategic Business 
Unit. Crawford serves on the National Academies of Sciences, Engineering, 
and Medicine’s Laboratory Assessments Board and has previously served on 
several National Academies’ committees including the Committee to Evaluate 
Post-Exascale Computing for the National Nuclear Security Administration, the 
Committee to Review Governance Reform in the National Nuclear Security Ad-
ministration, and the Committee to Evaluate the National Science Foundation’s 
Vertically Integrated Grants for Research and Education Program. She received 
her MS in operations research from Stanford University.

SYED BAHAUDDIN ALAM is an assistant professor of nuclear, plasma, and 
radiological engineering at the University of Illinois Urbana-Champaign (UIUC), 
where he leads the MARTIANS (Machine Learning & ARTificial Intelligence for 
Advancing Nuclear Systems) Laboratory. He was named as the national artificial 
intelligence (AI) leader in UIUC’s official response to the White House AI Action 
Plan (2025). He holds a joint appointment at the National Center for Supercom-
puting Applications. Alam’s research expertise centers on energy-efficient AI and 
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digital twins, with a primary focus on developing real-time AI algorithms for 
nuclear and energy systems. He has been recognized with numerous prestigious 
awards, including the Nuclear News 40 Under 40, Dean’s Award for Excellence 
in Research from the UIUC Grainger College of Engineering, Illinois Innovation 
Award finalist for excellence in cutting-edge innovation, a “Top of Minds” feature 
by UIUC Grainger College, the Cambridge Philosophical Society Award, the 
American Nuclear Society Best Paper Award, the Cambridge Trust Award, and 
an Outstanding Teaching Award. He earned his PhD (2018) and MPhil (2013) in 
nuclear engineering from the University of Cambridge and BSc (2011) in electri-
cal and electronic engineering from the Bangladesh University of Engineering 
and Technology. 

MARTA D’ELIA is the director of AI and ModSim at Atomic Machines and 
an adjunct professor at the Stanford University Institute for Computational & 
Mathematical Engineering. She previously worked at Pasteur Labs, Meta, and 
Sandia National Laboratories as a principal scientist and tech lead. She holds a 
PhD in applied mathematics and master’s and bachelor’s degrees in mathematical 
engineering. Her work deals with design and analysis of machine learning (ML) 
models and optimal design and control for complex industrial applications. She 
is an expert in nonlocal modeling and simulation, optimal control, and scientific 
ML. She is an associate editor of Society and Industrial and Applied Mathematics 
(SIAM) and Nature journals, a member of the SIAM industry committee, the vice 
chair of the SIAM Northern California section, and a member of the NVIDIA 
advisory board for scientific ML.

KRISHNA GARIKIPATI obtained his PhD at Stanford University in 1996, and 
after a few years of postdoctoral work, he joined the University of Michigan 
in 2000, rising to professor in the Departments of Mechanical Engineering and 
Mathematics. Between 2016 and 2022, he served as the director of the Michigan 
Institute for Computational Discovery & Engineering. In January 2024 he moved 
to the Department of Aerospace and Mechanical Engineering at the University of 
Southern California. His research is in computational science, with applications 
drawn from biophysics, materials physics, mechanics, and mathematical biol-
ogy. Of recent interest are data-driven approaches to computational science. He 
has been awarded the Department of Energy Early Career Award for Scientists 
and Engineers, the Presidential Early Career Award for Scientists and Engineers, 
and a Humboldt Research Fellowship. He is a fellow of the U.S. Association for 
Computational Mechanics, the International Association for Computational Me-
chanics, and the Society of Engineering Science; a Life Member of Clare Hall at 
the University of Cambridge; and a visiting scholar in computational biology at 
the Flatiron Institute of the Simons Foundation.
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SHIRLEY HO is a senior research scientist at the Center for Computational 
Astrophysics at the Simons Foundation. She joined the Foundation in 2018 to 
lead the Cosmology X Data Science group. Her research interests range from 
cosmology to developing new ML methods for scientific data that leverage shared 
concepts across scientific domains. Ho has extensive expertise in astrophysical 
theory, observation, and data science. She focuses on novel statistical and ML 
tools to address cosmic mysteries such as the origins and fate of the universe. 
Ho analyzes data from surveys by the Atacama Cosmology Telescope, the Euclid 
Observatory, the Large Synoptic Survey Telescope, the Simons Observatory, the 
Sloan Digital Sky Survey, and the Roman Space Telescope, among others, to 
understand our universe’s evolution. She earned her PhD in astrophysical sci-
ences from Princeton University in 2008 and BS degrees in computer science 
and physics from University of California, Berkeley, in 2004. Ho was previously 
a Chamberlain and Seaborg Fellow at Lawrence Berkeley National Laboratory 
(LBNL). She joined Carnegie Mellon University as an assistant professor in 2011, 
becoming the Cooper Siegel Career Development Chair Professor and a tenured 
associate professor. In 2016 she moved to LBNL as a senior scientist.

SCOTT H. HOLAN is a Curators’ Distinguished Professor and the department 
chair in the Department of Statistics and Data Science at the University of Mis-
souri and serves as a senior research fellow in the Research and Methodology 
Directorate at the U.S. Census Bureau. His research expertise includes develop-
ing statistical and ML methodology for dependent data (spatial, spatiotemporal, 
functional, and multivariate, among others), Bayesian methods, environmental 
and ecological statistics, official statistics, and survey methodology. He is an 
elected Fellow of the American Statistical Association (2014), an elected member 
of the International Statistical Institute (2017), an elected Fellow of the Institute 
of Mathematical Statistics (2021), and an elected Fellow of the American Asso-
ciation for the Advancement of Science (2024). Holan was a previous co-awardee 
of the Statistical Partnerships Among Academe, Industry, and Government Award 
(2017).

MICHAEL KEARNS is a professor and the National Center chair of the Depart-
ment of Computer and Information Science at the University of Pennsylvania 
and the founding director of the Warren Center for Network and Data Sciences. 
His research interests include topics in ML, AI, algorithmic game theory and 
microeconomics, computational social science, and quantitative finance and al-
gorithmic trading. Kearns often examines problems in these areas using methods 
and models from theoretical computer science and related disciplines. He also 
often participates in empirical and experimental projects, including applications 
of ML to problems in algorithmic trading and quantitative finance, and human-
subject experiments on strategic and economic interaction in social networks. 

https://nap.nationalacademies.org/catalog/29212?s=z1120


Foundation Models for Scientific Discovery and Innovation: Opportunities Across the Department of Energy ...

Copyright National Academy of Sciences. All rights reserved.

APPENDIX D	 81

Kearns spent 1991–2001 in ML and AI research at AT&T Bell Labs and in the 
last 4 years of his appointment was head of the AI department, which conducted 
a broad range of systems and foundational AI work. Kearns received his under-
graduate degrees from the University of California, Berkeley, in mathematics and 
computer science and his PhD in computer science from Harvard University. In 
2020, Kearns joined Amazon Web Services as an Amazon Scholar, focusing on 
fairness, privacy, and other “responsible AI” topics. He is an elected member of 
the National Academy of Sciences.

PETROS KOUMOUTSAKOS is the Herbert S. Winokur Jr. Professor for Com-
puting in Science and Engineering. He also currently holds a visiting researcher 
position at Google DeepMind in London. He studied Naval Architecture (diploma 
from the National Technical University of Athens, MEng from the University of 
Michigan, and received a PhD in aeronautics and applied mathematics from the 
California Institute of Technology [Caltech]). He has conducted postdoctoral 
studies at the Center for Parallel Computing at Caltech and at the Center for Tur-
bulent Research at Stanford University and NASA Ames. He has served as the 
chair of computational science at ETHZurich (1997–2020). Koumoutsakos is an 
elected Fellow of the American Society of Mechanical Engineers, the American 
Physical Society, and the Society of Industrial and Applied Mathematics. He 
is a recipient of the Advanced Investigator Award from the European Research 
Council and the Association for Computing Machinery’s Gordon Bell prize in 
supercomputing. He is an elected International Member of the National Academy 
of Engineering.
 
BRIAN KULIS is an associate professor at Boston University, with appointments 
in the Department of Electrical and Computer Engineering, the Department of 
Computer Science, the Faculty of Computing and Data Sciences, and the Division 
of Systems Engineering. From 2019 to 2023, he was also an Amazon Scholar, 
working with the Alexa team. Previously, he was the Peter J. Levine Career De-
velopment Assistant Professor at Boston University. Before joining Boston Uni-
versity, he was an assistant professor in computer science and in statistics at Ohio 
State University. Prior to that he was a postdoctoral fellow at the University of 
California, Berkeley, Electrical Engineering & Computer Sciences. His research 
focuses on ML, statistics, computer vision, and large-scale optimization. He ob-
tained his PhD in computer science from the University of Texas in 2008 and his 
BA from Cornell University in computer science and mathematics in 2003. For 
his research, he has won three best paper awards at top-tier conferences—two at 
the International Conference on Machine Learning (2005 and 2007) and one at 
the IEEE Conference on Computer Vision and Pattern Recognition (2008). He 
was also the recipient of a National Science Foundation (NSF) CAREER Award 
in 2015.
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DANIEL I. MEIRON is currently a professor of aerospace and applied and com-
putational mathematics. His research interests are primarily in computational 
fluid dynamics with connections to high-performance computing. He also has 
interests in computational materials science. He received an ScD in applied 
mathematics at the Massachusetts Institute of Technology working under Steven 
A. Orszag. He has participated as part of a recent National Academies’ study on 
exascale computing.

NATHANIEL TRASK recently joined the Department of Mechanical Engineer-
ing and Applied Mechanics at the University of Pennsylvania after spending 8 
years as technical staff at Sandia National Laboratories. His research focuses on 
developing foundational aspects of scientific machine learning (SciML) for high-
consequence engineering settings. By integrating concepts from modern physics 
and probability into the design of deep learning architectures, he leads a research 
program employing SciML for scientific discovery as well as to construct digital 
twins of complex systems. He is the deputy director of the Scalable, Efficient 
and Accelerated Causal Reasoning Operators, Graphs and Spikes for Earth and 
Embedded Systems Center, an Office of Science funded multi-institutional center 
developing next-generation AI architectures for Earth and embedded systems. 
He has received the Department of Energy Early Career Award, as well as the 
NSF Mathematical Science Postdoctoral Fellowship. His doctoral training was 
in applied mathematics, with a focus on developing novel optimization-based 
discretizations of partial differential equations to simulate multiphysics and mul-
tiscale problems. After moving to Sandia National Laboratories for a fellowship, 
he went on to work extensively on ML applied to material science and physics 
in extreme environments.
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