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Preface

Foundation models represent a potentially transformative technology for
progressing scientific discovery and innovation. However, their rapid adoption
has raised questions and concerns about their reliability, validity, and reproduc-
ibility. In 2024, the Department of Energy (DOE) requested that the National
Academies of Sciences, Engineering, and Medicine conduct a study to consider
current foundation models’ capabilities, and future possibilities and challenges.

The National Academies established the Committee on Foundation Models
for Scientific Discovery and Innovation to conduct this study. The study com-
pares foundation models with more traditional computational methods, addresses
exemplar use cases of foundation models, specifies strategic considerations, and
outlines challenges for the development and use of foundation models. The full
statement of the committee’s task is shown in Appendix A.

The committee met in person in March 2025 and met virtually 15 times to
receive briefings from experts and stakeholders (for a list of presentations, see
Appendix B), review relevant reports and technical literature, deliberate, and
develop this report.

The committee is grateful for the support of DOE’s Office of Science, Of-
fice of Biological and Environmental Research, and National Nuclear Security
Administration. The committee also extends its sincere thanks to the following
National Academies’ staff for their assistance throughout the study: Blake Reich-
muth, Tho Nguyén, Erik Svedberg, Sam Koretsky, Jon Eisenberg, and Michelle
Schwalbe.

Dona Crawford, Chair
Committee on Foundation Models for Scientific Discovery and Innovation
October 2025

XV

PREPUBLICATION COPY —Subject to Further Editorial Correction

Copyright National Academy of Sciences. All rights reserved.


https://nap.nationalacademies.org/catalog/29212?s=z1120

Foundation Models for Scientific Discovery and Innovation: Opportunities Across the Department of Energy ...

PREPUBLICATION COPY —Subject to Further Editorial Correction

Copyright National Academy of Sciences. All rights reserved.


https://nap.nationalacademies.org/catalog/29212?s=z1120

Foundation Models for Scientific Discovery and Innovation: Opportunities Across the Department of Energy ...

Summary

There is significant interest in the development and application of foundation
models for scientific discovery. Foundation models possess the capacity to gener-
ate outputs or findings and discern patterns within extensive data sets with data
volumes that are considered overwhelming for classical modes of inquiry. Ef-
forts are under way to use these models to accelerate various aspects of scientific
workflows (including streamlining literature reviews, planning experiments, data
analysis, and code development) and generating novel findings and hypotheses
that can then spur further research directions. However, significant challenges
remain in the effective use of these models in scientific applications, including
issues with flawed or limited training data and limited verification, validation,
and uncertainty quantification capabilities.

This report of the Committee on Foundation Models for Scientific Discov-
ery and Innovation explores many of these opportunities and challenges and
describes key gaps and potential future directions. This report explores use of
foundation models independently and cooperatively with traditional modeling,
exemplar use cases of foundation models, and challenges associated with the
use of foundation models. While much of this report applies broadly to the use
of foundation models for scientific discovery, the conversations are specifically
focused on strategic considerations and directions for the Department of Energy
(DOE) and its unique mission.

FOUNDATION MODELS AND TRADITIONAL MODELING

The current definition of foundation models varies across communities. This
study uses the following definition:

1
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2 FOUNDATION MODELS FOR SCIENTIFIC DISCOVERY AND INNOVATION

Today, foundation models are large-scale neural networks trained on vast
amounts of heterogeneous data with the capability of learning new representa-
tions via fine-tuning on additional data. They represent a shift from traditional
artificial intelligence (Al) systems designed for specific tasks. They possess the
capacity to generate findings and discern patterns within extensive data sets with
data volumes that exceed by orders of magnitude the computing and storage
capacities of traditional solvers and even previous machine learning models.

Some of the key characteristics defining foundation models include massive
scale, self-supervised pretraining, adaptability, emergent capabilities, ability to
work in multiple modalities and be task agnostic, and a multipurpose architecture.
These characteristics position foundation models as a potential paradigm shift for
scientific research.

Despite the emergence of foundation models, traditional modeling (large-
scale computational science solvers as well as statistical models) often retains
critical advantages, particularly in interpretability, reliability, and strict adherence
to physical laws. The fusion of traditional modeling approaches with foundation
models is a promising direction.

Conclusion 2-1: Integrating traditional models with foundation models
is proving to be increasingly powerful and has significant potential to
advance computational findings in the physical sciences. These hybrid
methods can be viewed as algorithmic alloys that can leverage the
physical interpretability and structures of classical computational ap-
proaches alongside the data-driven adaptability of foundation models.
This fusion enables the modeling of complex multiphysics, multiscale,
and partially observed (understood) systems that challenge traditional
approaches both computationally and mathematically.

The fusion of foundation models with traditional numerical methods repre-
sents more than a computational advance; it constitutes a paradigm shift in the
conduct of scientific discovery.

Recommendation 2-1: The Department of Energy (DOE) should
invest in foundation model development, particularly in areas of
strategic importance to DOE, including areas where DOE already
has advantages leveraging its unique strengths in those domains.
DOE should also prioritize the hybridization of foundation mod-
els and traditional modeling. Such hybrid modeling strategies can
fuse the physical interpretability and robustness of classical solvers
with the efficiency and learning capabilities of foundation models,
particularly in multiscale, multiphysics applications where tradi-
tional approaches have limitations in capturing the heterogeneity,
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SUMMARY 3

complexity, and dynamics of the physical system. DOE should not,
however, abandon its expertise in numerical and computational
methods and should continue investing strategically in software and
infrastructure.

Although traditional modeling remains superior today in terms of interpret-
ability and adherence to physical laws, integrating it with foundation models
offers powerful new capabilities. These hybrid approaches enable better model-
ing of complex systems, and DOE should prioritize the use of these integrated
methods.

EXEMPLAR USE CASES OF FOUNDATION MODELS

In framing potential DOE efforts in foundation models, the strategic focus re-
mains a subject of debate: how best to balance the department’s broad application
space, navigate the trade-offs between leveraging past industry advancements
and addressing the unique national security imperatives of DOE, and ensure
responsible stewardship of taxpayer resources. A primary concern is that DOE
cannot compete with the head start in technology maturation and large market
share currently held by large companies, such as Microsoft and Google, that back
efforts with large investments (both financially and with workforce).

Conclusion 3-1: Commercial industry has driven rapid progress in
developing large language model-based foundation models, yielding
a robust ecosystem of tools and capabilities. As demonstrated by, for
example, the collaboration between Los Alamos National Laboratory
and OpenAl, DOE can leverage these industry advances and findings
as it develops foundation models for science and conducts coordinated
DOE-wide assessments to identify appropriate opportunities.

This raises the fundamental question of whether DOE should be competing
at all in the foundation model space and, if it does, whether it should focus on col-
laborations with industry or focus on complementary space where DOE’s unique
mission lies. The committee believes that DOE needs to develop these tools in-
ternally in addition to the private sector’s development because the needs of the
government, whether for national security or continued scientific preeminence,
will not be met by private interests. The two endeavors (private and public) do not
compete —they complement each other. Despite the mismatch in funding com-
pared to industry leaders, DOE holds clear strategic advantages in several areas.

Conclusion 3-2: DOE retains clear strategic advantages in five areas:
(1) a world-class scientific workforce in computational science; (2)
access to large-scale, science-focused, and experimental computing
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4 FOUNDATION MODELS FOR SCIENTIFIC DISCOVERY AND INNOVATION

hardware; (3) stewardship of unique experimental facilities and open
and controlled or classified scientific data; (4) capability to tackle
long-term, high-risk, high-reward scientific problems; and (5) access
to unique scientific data that may not be easily reproduced and which
can be expanded as synthetic data may be necessary for training future
Jfoundation models.

With DOE’s advantages and foundation model capabilities in mind, the com-
mittee directed a series of recommendations addressing the potential role DOE
can play in their development and implementation.

Keeping humans in the loop is important for foundation models for a number
of reasons. These include addressing accountability and oversight, error detection
and correction, interpretability and trust, and contextual judgment. The human
counterpart can help determine the suitability and reliability of the foundation
model. This outlines the following conclusion and recommendation from the
committee regarding the importance of including humans in the foundation model
processes.

Conclusion 3-3: While Al systems can exceed human performance in
many ways, they can also fail in ways a human likely never would. For
this reason, the qualification of foundation models will be necessary for
decision making and prediction in the presence of uncertainty.

Recommendation 3-1: The Department of Energy (DOE) should
study and develop the fusion of artificial intelligence (AI) and hu-
man capabilities. At present, Al systems handle the repetitive, man-
ual, or routine tasks, and are starting to show abilities to reason. As
Al becomes more capable, deep analysis and strategy recommenda-
tions become feasible, but humans should maintain oversight and
validation, particularly for qualification and other aspects of DOE’s
mission.

Agentic Al has surged as a means of using large language models (LLMs)
to launch external agents to explore hypotheses or improve or verify responses.
There is a unique opportunity for DOE to explore these capabilities. Such capa-
bilities may, for example, expose automatic differentiation “hooks” in their open-
source libraries; to train foundation models, a software interface must expose
the computational graph of a machine learning library to adjoint calculations in
a scientific code, allowing the seamless backpropagation of gradients between
the two codes. The majority of DOE codes are written in Fortran, C, or C++ and
do not expose the necessary computational graph to pass adjoint information. If
such hooks or interfaces were exposed, LLMs would be able to couple directly
to production codes, integrating robust numerical prediction into the training
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process. This would allow LLMs to both perform simulation and calculate loss
function, enabling complete end-to-end training with DOE’s reliable and mature
physics-based simulators. For example, a text prompt (e.g., “Why is the drag high
on this vehicle?”) could directly evaluate sensitivities to components of a scien-
tific simulator (e.g., “The mesh facets of the tail fins are in a high-shear layer”)
rather than attempting to glean answers through text in scientific reports. By a
similar process, DOE could apply LLMs and foundation models to help operate
user facilities, leading to autonomous “self-driving laboratories.”

Recommendation 3-2: The Department of Energy should evaluate
the capabilities and risks of agentic artificial intelligence (AI) sys-
tems for its core applications. In particular, the committee advocates
exploring agentic Al for developing autonomous laboratories for
scientific discovery, decision making, and action planning for high-
stakes applications.

With the rapid development of foundation models and other Al systems,
there is additional potential for security risks from these systems. The adversarial
use of foundation models poses security risks in two main ways. First, attackers
could target the model itself to subvert its function or steal intellectual property
through methods such as Prompt Injection (jailbreaking), Data Poisoning, and
Model Stealing. Second, adversaries could leverage foundation models as weap-
ons to accelerate traditional cybercrime, enabling the mass production of highly
effective phishing and deepfakes, lowering the barrier to writing malicious code,
and introducing new supply chain vulnerabilities when models are integrated
with external systems.

There needs to be the development of processes to verify that foundation
models are reliable, safe, and trustworthy throughout their life cycles. Additional
measures should also be developed to protect against adversarial applications of
foundation models. These could be assisted by proactive cybersecurity strate-
gies such as red teaming, where real-world attacks are simulated to help identify
and address security weaknesses. The committee therefore states the following
recommendation.

Recommendation 3-3: To address potential security risks arising
from the adversarial use of foundation models, the Department of
Energy should explore strategies for artificial intelligence assurance,
red teaming, and development of countermeasures.

Although industry leaders may have a head start with foundation models,
there is value for DOE to focus on areas where it holds strategic advantages.
Using these capabilities to help develop and direct foundation models can help
to solidify DOE’s place in foundation models for scientific discovery and innova-
tion leadership.
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STRATEGIC CONSIDERATIONS AND DIRECTIONS FOR
THE DEPARTMENT OF ENERGY FOUNDATION MODELS

The national laboratories hold deep institutional expertise, embedded in their
workforce, legacy data sets, and extensive experimental and modeling infrastruc-
ture. Yet the sheer scale of the DOE system, characterized by siloed specialized
knowledge and the complexity of coordinating a large, distributed workforce,
can be fundamentally misaligned with the speed and flexibility required for rapid
decision making.

DOE invested early in material informatics and high-throughput experi-
mental data curation campaigns to build unique access to data sets, through the
Material Genome Initiative and other efforts. By combining advanced foundation
models, high-performance computing, and curated experimental data, materials
informatics can dramatically reduce the search space for viable material substi-
tutes or processes. This is an example of a DOE effort to advance an aspect of
computational science and how such research and development leads to important
new capabilities.

Conclusion 4-1: Many DOE missions demand rapid analysis and deci-
sion making under urgent national security or economic constraints.
Although the national laboratories hold deep institutional expertise—
embedded in their workforce, legacy data sets, and extensive experi-
mental and modeling infrastructure—the sheer scale of the DOE system,
characterized by siloed specialized knowledge and the complexity of
coordinating a large, distributed workforce, can be misaligned with the
agility required for decisive action. Development of foundation models
for this purpose poses a unique opportunity to address rapid analysis
and decision making.

Recommendation 4-1: The Department of Energy should explore
the use of foundation models to accelerate situational understanding
by unifying dispersed, siloed, and diverse multimodal data sources
as input to decision-making frameworks across heterogeneous
environments.

Additionally, the needs of a DOE foundation model arguably pose more
stringent requirements than in academic/industrial settings. For stockpile stew-
ardship, simulation of critical components has matured over decades to the point
that simulations calibrated by extensive testing are viewed as capable of replacing
full-scale, experiment-based design. This outlines more opportunities for DOE.

Conclusion 4-2: DOE is uniquely positioned to shape the future of Al-
driven science. Material informatics and near-autonomous scientific
platforms highlight the power of combining curated experimental data,
simulation, and advanced Al to accelerate discovery. Federated comput-
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ing and facility integration extend this vision by enabling distributed use
of DOE’s infrastructure.

The curation and integration of specialized knowledge coupled with emerg-
ing multimodal and agentic Al approaches underscore the importance of preserv-
ing expertise, reasoning across diverse scientific data streams, and directly linking
foundation models to DOE’s mature simulation ecosystem.

Recommendation 4-2: The Department of Energy should both mod-
ernize existing infrastructure and invest in new infrastructure to
generate, curate, and facilitate the large data corpus necessary to
build a scientific foundation model, including simulations to create
data, high-throughput and/or autonomous experimental facilities,
and facilities to host data. Additionally, they should create interfaces
(e.g., agentic, retrieval-augmented generation tools) through which
large foundation models may easily access these sources. A successful
strategy will provide holistic access to multimodal or heterogeneous
infrastructure across the entire DOE complex, mitigating the ‘“‘stove-
piping” of assets between different laboratories or departments.

A strength of DOE is its ability to retain scientific talent, which should be
reinforced with Al expertise as well. The success of any DOE-wide foundation
model initiative depends entirely on attracting and retaining top Al talent, includ-
ing overcoming the hurdle of slow funding cycles. However, DOE currently has
excellent infrastructure and expertise as well as well-defined, mission-driven
research.

Conclusion 4-3: DOE struggles to compete with the private sector for
Al talent due to lower salaries and slow, traditional funding cycles.
However, DOE’s unique strengths, such as its mission-driven work,
long-term career paths, and powerful supercomputing infrastructure,
can be leveraged to attract talent. Building a strong academic pipeline
through closer collaboration with universities is also essential for its
long-term success.

Recommendation 4-3: To maintain a top-tier workforce, the De-
partment of Energy (DOE) should design leadership-scale scientific
research programs and provide staff with opportunities to rap-
idly adapt to a quickly evolving technological landscape. To attract
early-career scientists, DOE should be perceived as the best place
to become a leader in scientific machine learning; although industry
may lead in large language model space, the unique access to state-
of-the-art science can attract top talent. To be competitive with
large-scale development efforts in industry, it is important to avoid
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fracturing of scientists’ time and attention. We recommend that
DOE should create mechanisms by which medium through large
teams can mount coordinated, focused efforts targeting mission-
critical developments in fundamental research into, and applica-
tions of, foundation models for science.

One of DOE’s major strengths is its data collection and generation capa-
bilities. Leaning on this strength can be beneficial to the development and use
of foundation models for scientific discovery and innovation. To expedite this
potential, the data generated needs to be readable and usable by both the human
users and the foundation models. This will help enhance operational efficiency
and productivity and boost communication and collaboration. The standardization
of data can help make DOE data readable and usable.

Conclusion 4-4: Although DOE curates many high-value data sets of
value for construction of foundation models, they are typically devel-
oped in an ad hoc manner with heterogeneous file formats and data
curation strategies that currently pose a barrier to high-throughput
processing of data. Foundation models present a unique opportunity to
address this issue.

Recommendation 4-4: To increase the success of future foundation
models for science, the Department of Energy should invest in large-
scale data user facilities (classified and unclassified), leveraged by
artificial intelligence’s growing capability to interpret heterogeneous
scientific data, similar to the successes experienced with previous
investments in supercomputers and open-source scientific comput-
ing libraries.

FOUNDATION MODEL CHALLENGES

Applying foundation models within DOE missions presents a multilayered
set of scientific and operational challenges. These models, which emerged from
success in domains such as natural language processing and vision, struggle to
transfer directly into computational science workflows that demand physical
fidelity, mesh-aware representations, and scalable performance across problems
involving multiscale and multiphysics described by partial differential equations.

Verification, validation, and uncertainty quantification (VVUQ) are essen-
tial components of trustworthy scientific computing, ensuring that models are
mathematically sound (verification), accurately represent the real-world systems
they simulate (validation), and provide a clear understanding of uncertainties in
their predictions (uncertainty quantification). These practices are well established
in traditional modeling and simulation but are not yet adequately developed or
standardized, particularly for foundation models. AI models often operate as
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black boxes, lacking transparency in how outputs are generated or how reliable
they are under different conditions. Establishing VVUQ standards for foundation
models is critical to ensure that these systems can be safely and effectively used
in scientific discovery.

Conclusion 5-1: VVUQ methods analogous to those for traditional
computational modeling do not exist for, or map directly onto, founda-
tion models.

Conclusion 5-2: VVUQ, interpretability, and reproducibility are critical
for establishing and maintaining trust in systems that are inherently
complex, opaque, and increasingly deployed in high-stakes situations.
Integration of VVUQ into foundation models would lead to increasing
their trustworthiness, reliability, and fit for purpose, which is essential
for future scientific discovery and innovation.

Recommendation 5-1: The Department of Energy (DOE) should
lead the development of verification, validation, and uncertainty
quantification frameworks tailored to foundation models, with built-
in support for physical consistency, structured uncertainty quanti-
fication, and reproducible benchmarking in DOE-relevant settings.

There have been successes in validating model outputs with experimental
data, as the data provide a real-world benchmark against which the models’ ac-
curacy can be determined. Without high-quality and robust experimental data, it
is difficult to determine if a model’s predictions are valid or merely artifacts of its
assumptions or training data. This is especially important for foundation models
and hybrid models, which may generalize well in theory but fail under specific
conditions or in untested regimes. Therefore, the committee states the following
conclusion and recommendation.

Conclusion 5-3: Foundation models for science will demand more and
different physical experiments to validate the veracity of the Al predic-
tions. Empirical grounding ensures that foundation model outputs reflect
physical laws and domain-specific behavior. This is especially critical
in high-stake DOE applications, where simulations alone cannot guar-
antee correctness, and where physical experiments provide the only
definitive test of predictive validity.

Recommendation 5-2: In line with Recommendation 4-2, the De-
partment of Energy should place high priority on data collection
efforts to support reproducible foundation model training and vali-
dation, analogous to traditional efforts in verification, validation,
and uncertainty quantification.
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DOE is in a unique position for the development and use of foundation
models for scientific discovery. They are leaders and have the capacity to tackle
long-term, high-risk, high-reward scientific problems. An issue currently with
foundation models for science is the lack of standards for development and use.
Using these key resources, DOE can be contributing to the development and es-
tablishment of these standards for foundation models. Having concrete standards
ensures compatibility and interoperability and improves reliability of a system.

Recommendation 5-3: The Department of Energy should estab-
lish and enforce standardized protocols and develop benchmarks
for training, documenting, and reproducing foundation models for
science and should participate in defining software standards, ad-
dressing randomness, hardware variability, and data access across
its laboratories and high-performance computing infrastructure.

Although many of the technical challenges associated with foundation mod-
els can be addressed through internal research and development, deployment at
DOE scale will increasingly involve external partnerships. Collaboration with
industry introduces more constraints. Proprietary model weights, restricted data
access, and closed-source infrastructure often prevent rigorous VVUQ and re-
producibility practices, especially when security, transparency, or auditability is
required. Collaboration with industry introduces more constraints. Proprietary
model weights, restricted data access, and closed-source infrastructure often
prevent rigorous VVUQ and reproducibility practices, especially when security,
transparency, or auditability is required. These collaborations demand careful
planning and coordination to bridge institutional differences in mission, priorities,
and operational practices, particularly in areas such as contracting mechanisms,
responsible Al standards, intellectual property frameworks, data-sharing proto-
cols, and alignment on VVUQ expectations.

Conclusion 5-4: Partnering of DOE laboratories with industry on foun-
dation models will require deliberate effort, including flexible contract-
ing mechanisms, clear intellectual property agreements, data-sharing
processes, aligning on VVUQ approaches, responsible Al practices,
and a shared understanding of respective missions, objectives, and
constraints.

Recommendation 5-4: The Department of Energy should deliber-
ately pursue partnerships with industry and academia to address
national mission goals, governed by flexible contracts, responsible
artificial intelligence standards, and alignment on reproducibility,
verification, validation, and uncertainty quantification approaches
and data sharing.
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Introduction

This chapter presents the rationale for the study, including any directive that
led to its initiation. The statement of task for the study, the committee’s inter-
pretation of elements of the statement of task, and the structure of the report are
also described. The chapter also points to potential reasons why the Department
of Energy (DOE) is furthering the development and use of artificial intelligence
(AI) models, such as foundation models. The study charge and the committee’s
interpretation of its key elements are then discussed, followed by a review of the
report’s structure in fulfillment of the study charge.

SIGNIFICANCE OF FOUNDATION MODELS

Foundation models are typically large-scale neural networks trained on vast
amounts of heterogeneous data with the capability of learning new representa-
tions via fine-tuning on additional data. They represent a departure from tradi-
tional Al systems designed for specific tasks. They can be standalone systems or
can be used as a “base” for many other applications (see Figure 1-1). Today, the
most prominent foundation models are large language models (LLMs) trained
on vast amounts of text data to process and generate human-like responses,
answer follow-up questions, and complete other language-related tasks. There
is widespread enthusiasm about the use of foundation models, especially LLMs
and approaches that build on LLMs, to advance scientific research (Lee 2024).

When these models are used in scientific research, they encounter chal-
lenges including limited domain-specific knowledge, interpretability of the re-
sults, sparse training data, integration with experimental data, lack of causal
understanding, and the evolving nature of scientific knowledge.
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FIGURE 1-1 A foundation model centralizes the information from all the data from
various modalities and can then be adapted to a wide range of downstream tasks.
SOURCE: Bommasani et al. 2021. CC BY 4.0.

These challenges provide opportunities for research across all areas of DOE.
The pursuit of these opportunities is an important endeavor as the private sector
is presently leading the race for the development of state-of-the-art foundation
models. The landscape of this race is in constant flux, and the leaders at any
time will reap major rewards and may determine the direction of future scientific
endeavors.

The DOE national laboratories are special-purpose entities referred to as
federally funded research and development centers (FFRDCs). FFRDCs provide
the government with a dedicated, objective, and highly specialized technical
and analytical capability that is essential for addressing long-term, complex
national challenges. FFRDCs cannot manufacture products or compete directly
with industry and have no commercial or shareholder interests, ensuring that
their advice, analysis, and research are unbiased, allowing them to act as “honest
brokers” and trusted advisors. They attract, develop, and retain unique scientific
expertise that combines world-class research and entrepreneurial know-how to
support the mission of the agencies they serve. By assembling teams of experts
from various fields, FFRDCs address multifaceted technical challenges that often
require high-risk experiments and large facilities, such as supercomputers or light
sources. FFRDCs play a crucial role in maintaining and advancing the nation’s
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scientific and technical expertise in critical areas and facilitate technology transfer
to the private sector. As such, the DOE national laboratories have an important
role to play in advancing Al technologies, particularly Al foundation models for
scientific discovery and innovation.

Al, particularly with the emergence of foundation models, is a transformative
force poised to redefine future economies, national security, scientific discovery,
global power dynamics, and daily life. Given this immense impact, maintaining
U.S. leadership in Al is imperative, necessitating an understanding of the global
competitive landscape, particularly coming from China.

China has strategically prioritized its development of Al, aiming to become a
world leader in the field by 2030. This goal was outlined in its “Next-Generation
Artificial Intelligence Development Plan,” which was released in July 2017.
Their ambition is supported by significant government investment in Al theory,
technology, and application. Chinese Al firms have expanded their influence
by freely distributing their models for the public to use, download, and modify,
which makes them more accessible to researchers and developers around the
world. In terms of quantifiable metrics, China is ahead of the United States: it
significantly outpaced the United States in Al patent filings in 2022, possesses a
leading advantage in the sheer volume of data, and leads the United States in the
quantity of Al scientific papers. China has cultivated a robust domestic ecosys-
tem, boasting abundant science, technology, engineering, and mathematics talent,
resilient supply chains, and impressive manufacturing capabilities (Omaar 2024).

The nation that shapes the LLMs powering tomorrow’s applications and
services will wield great influence not only over the norms and values embed-
ded in them but also over the critical semiconductor ecosystem that underpins
Al computing. The fact that both China and the United States believe that these
technologies could also provide military advantages only heightens the impor-
tance of achieving and maintaining long-term Al leadership.

Although the report will be examining use of foundation models for scientific
discovery and innovation specifically for DOE, the development and use of these
tools will benefit the general scientific community. The report will examine how
foundation models can help drive progress in complex systems—such as digital
twins—and unlocks new findings in areas vital to American competitiveness,
including materials science, nuclear science, and public health.

STUDY APPROACH

The study was supported by DOE’s Office of Science, National Nuclear Se-
curity Administration, and Biological and Environmental Research program. In
collaboration with the National Academies of Sciences, Engineering, and Medi-
cine, these DOE offices developed the study’s statement of task (see Box 1-1).
The National Academies appointed a committee of 11 members with expertise
in mathematics, statistics, computer science, data science, algorithms and scal-
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BOX 1-1
Statement of Task

A National Academies of Sciences, Engineering, and Medicine consensus
study will assess the state of the art in foundation models and their use across
science research domains relevant to the Department of Energy mission. The
study will address the following questions:

»  What are some exemplar use cases where foundation models could impact
scientific discovery and innovation?

»  How can foundation models be used in conjunction with traditional model-
ing, computational, and data science approaches?

+ How can challenges such as verification, validation, uncertainty quantifica-
tion, and reproducibility best be addressed to advance trustworthy founda-
tion models?

+  What are priority research areas for investments to advance the develop-
ment and use of foundation models in scientific applications? What are the
trade-offs in investing in foundation models versus other mathematical and
computational approaches?

ability, energy consumption and computing, scientific applications, model trust-
worthiness, and DOE and laboratory experience. Committee biographies are
provided in Appendix D.

The committee held several information-gathering meetings in support of
this study, including one in-person public meeting (March 11-12, 2025) where
the committee was presented with material from industry scientists and Al lead-
ers from DOE laboratories. The other information-gathering sessions (February
11, May 6, and May 20, 2025) were virtual where presenters discussed DOE’s
interest in Al for science, learning models from data, and agentic Al.

Report Organization

This report was written with the intention of informing the scientific and
research community, academia, pertinent government agencies, Al practitioners,
and those in relevant industries about open needs when developing and using
foundation models. The study takes an objective approach to understanding the
field of foundation models specifically for scientific discovery and innovation
and the potential opportunities that their use and development can bring to DOE.
The report begins with a discussion on the use of foundation models with and
without traditional modeling techniques' (Chapter 2). Chapter 3 explores the suc-

! For this report, traditional modeling refers to large-scale computational science solvers as well
as statistical models.
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cesses and exemplar use cases of foundation models and potential applications
in which DOE could be most successful in its endeavors with foundation models
for science. Chapter 4 discusses the strategic considerations and directions of
foundation model use while challenges that the use of foundation models impose
are covered in Chapter 5. The committee addresses major conclusions and recom-
mendations throughout Chapters 2 through 5.

The committee would like to stress that while the report uses the terms Al,
Al for science, Al models, LLMs, machine learning, and foundation models,
the report is specifically directed toward the use and development of foundation
models for science. The report is further specifically directed toward DOE’s use
and development of these models.
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Foundation Models and
Traditional Modeling

DEFINING THE SCOPE AND USE OF FOUNDATION MODELS

The landscape of artificial intelligence (Al) is undergoing a significant trans-
formation driven by the emergence and evolution of foundation models. These
models, typically large-scale neural networks trained on vast quantities of het-
erogeneous data, represent a departure from traditional Al systems designed for
specific tasks. Foundation models possess the capacity to generate findings and
discern patterns within extensive data sets with data volumes that exceed by
orders of magnitude the computing and storage capacities of traditional solvers
and even previous machine learning models.

Key characteristics defining foundation models include the following:

* Massive scale: Trained on vast data sets (web-scale, trillions-plus of data
points) with immense internal complexity (trillions-plus of parameters),
requiring significant computational resources for their processing.

* Self-supervised pretraining: Learning from unlabeled data, reducing the
need for manual annotation.

* Adaptability (transfer learning): Easily fine-tuned for diverse downstream
tasks, leveraging pretrained generalizable knowledge.

* FEmergent inference: The ability to derive context and demonstrate reason-
ing that is not explicitly in the training data.

* Multimodal and task-agnostic: Ability to handle multiple modes of in-
puts, regardless of task.

* Multipurpose architecture: The architectures featuring combinations of
transformers with attention mechanisms, encoders/decoders, and multi-
layer perceptrons are proving effective across modalities.
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* Scalability: Performance generally improves with larger models, data
sets, and computational capability. The same architecture can be adapted
across domains via fine-tuning and deployed in resource-constrained en-
vironments using quantization (lower precision), selective activation of
parameters, and low-rank adaptation.

* Generalizability: Transferring knowledge across diverse tasks and do-
mains with minimal retraining, enabling strong zero-shot and few-shot
performance, valuable for scientific and engineering applications using
large technical data sets.

These characteristics position foundation models as a potential paradigm shift'
for scientific research with a concomitant impact on the Department of Energy’s
(DOE’s) mission.

BENEFITS OF ONLY USING FOUNDATION MODELS

In evaluating the roles of foundation models for scientific discovery, a natural
early question is whether they present stand-alone alternatives to the model-
ing approaches that preceded them. We examine this perspective in the current
section.

The key strengths of foundation models lie in adaptability, generalizability,
scalability, and their capacity for multimodal integration. Foundation models can
seamlessly combine multiple data modalities—including numerical simulation
outputs, experimental sensor data, textual documentation, images, and videos —
into unified representational frameworks. This unique capability makes them
particularly well suited for fields such as life sciences, materials science, fluid
dynamics, weather forecasting, and energy systems, where data complexity and
heterogeneity pose significant challenges to traditional methods.

The scalability of foundation models, supported by large-scale computational
resources, allows them to uncover complex patterns and interactions within
massive data sets. This results in accelerated discovery and improved predic-
tive performance in multifaceted scientific scenarios (Bodnar et al. 2025). Their
generalized learning mechanisms further enable deployment across diverse op-
erational contexts without requiring extensive manual reprogramming. In envi-
ronments such as DOE facilities, this adaptability can lead to more dynamic and
responsive control systems, enhancing operational efficiency and resilience in the
face of evolving conditions.

Within DOE’s computational science program, foundation models bring two
particularly valuable advantages. The first centers on spatiotemporal foundation
models—transformer-based architectures pretrained on large data sets derived

!'A paradigm shift in this context means a fundamental change in how scientific research is con-
ducted, driven by the introduction of foundation models.
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from high-fidelity simulations of multiphysics systems described by partial dif-
ferential equations. These models can forecast spatiotemporal solutions, aligning
with one of the core goals of scientific machine learning: extending the capabili-
ties of traditional, computationally expensive, discretization-based solvers. Spa-
tiotemporal foundation models offer dramatic reductions in computational cost,
enabling large-scale or long-time simulations at up to five orders of magnitude
less computational effort. This has been compellingly demonstrated in domains
such as Earth system modeling (Bodnar et al. 2025).

Although spatiotemporal foundation models may not yet achieve the ac-
curacy of equation-based solvers, they offer a compelling trade-off through fine-
tuning. When pretrained on a broad range of physics, these models can be adapted
to new physical systems not present in the original training data. Remarkably, this
transfer learning often yields better results than training the model from scratch
on a single, narrow domain. Thus, spatiotemporal foundation models not only
function as efficient solvers but also provide a scalable framework for general-
izing across physical phenomena—an invaluable capability in a wide-ranging
computational science program. Examples include multiphysics pretraining (Mc-
Cabe et al. 2023) and co-domain neural operators (Rahman et al. 2024).

A second and perhaps even more intriguing potential lies in the inference
of emergent physics. Because of the underlying transformer architecture —spe-
cifically the use of attention mechanisms and the capacity to learn contextual
relationships over long pretraining epochs—these models may begin to reveal
new physical findings or discoveries. They could go beyond simply generating
solutions to explain the emergence of features in space and time, such as why
vortex structures emerge in certain regions of a flow at specific times, or how
macroscale material failure occurs as a consequence of microcrack and disloca-
tion interactions. Such tasks are central to the roles of computational physicists.
This possibility becomes even more plausible when spatiotemporal foundation
models are integrated with large language models (LLMs) into multimodal sys-
tems (Ashman et al. 2024). Such combinations may bridge the gap between
predictive modeling and interpretive reasoning, bringing us closer to models that
not only solve complex physical systems but also explain them.

BENEFITS OF USING “TRADITIONAL MODELING”
OVER FOUNDATION MODELS

In the context of DOE applications, traditional models refer to large-scale
computational science solvers as well as statistical models. The solvers include
finite element, finite difference, finite volume, and spectral methods and related
numerical techniques. Over decades, partnerships between DOE and computa-
tional science researchers at U.S. universities have fostered the development of a
robust ecosystem of discretization-based solvers. Supported by DOE’s Advanced
Scientific Computing Research and DOE’s National Nuclear Security Adminis-
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tration Advance Simulation and Computing programs, this effort has produced
vast suites of high-performance scientific software, much of it pioneered within
DOE laboratories. Examples include the Trilinos Project, Dakota, and MFEM
(Adams et al. 2020; Anderson et al. 2021; Heroux et al. 2005).

This ecosystem enables the modeling and simulation of a wide range of
multiphysics problems relevant to DOE missions. It has evolved to support
computations at the exascale and beyond, laying a firm foundation for applying
computational science to complex, large-scale problems in physics, energy, Earth
systems, and national security. As machine learning and artificial intelligence
have grown in prominence, DOE-supported computational frameworks have
begun to incorporate these data-driven methods, enriching traditional modeling
approaches without discarding them.

A core strength of discretization-based solvers is their ability to deliver
high-fidelity solutions that accurately represent the underlying physics—bounded
mainly by the numerical algorithms and available computing power. These
solvers explicitly encode conservation laws (e.g., energy, mass, momentum),
thermodynamic consistency, and convergence properties, ensuring that model
predictions are transparent, interpretable, and physically grounded. Such fidelity,
however, comes at a cost: these models often demand significant computational
resources, especially for large spatial domains or long-time horizons.

Despite the emergence of foundation models, traditional physics-based mod-
els retain critical advantages, particularly in interpretability, reliability, and strict
adherence to physical laws. They are accompanied by rigorous verification,
validation, and uncertainty quantification frameworks essential for DOE’s high-
stakes applications—such as nuclear reactor safety, weapons stewardship, and
other national security tasks. These frameworks ensure compliance with safety,
regulatory, and quality standards, which remain challenging for purely data-
driven foundation models to satisfy. Furthermore, foundation models have yet to
demonstrate generalizability across geometries, initial and boundary conditions
and transitions such as phase changes, laminar-to-turbulent flow, shock forma-
tions, and material failure. These are standard for advanced discretization-based
solvers.

In addition to being more amenable to interpretation and to the quantification
of their uncertainty, traditional models often require less computational overhead
for model development and deployment compared to the extensive pretraining
and fine-tuning phases of foundation models. (However, geometry and mesh
generation can prove time-consuming, and the expense of large direct numerical
simulations is a well-recognized limitation.) Furthermore, traditional models play
a foundational role in the data ecosystem—they are often required to generate the
high-quality data used to train, fine-tune, or validate foundation models.

Another powerful advantage of traditional approaches lies in their ability to
be integrated into statistical modeling frameworks. In many settings, physics-
based models, of moderate or lower fidelity, can be embedded within Bayesian
hierarchical structures to facilitate efficient uncertainty quantification.
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BENEFITS OF USING TRADITIONAL
MODELING WITH FOUNDATION MODELS

Integrating Foundation Models with Traditional Scientific
Computing: A Pathway to Accelerated Discovery

Integrating traditional modeling approaches with foundation models offers
transformative potential for DOE’s scientific enterprise. Traditional computa-
tional methods—such as finite element, finite volume, and spectral solvers—have
formed the bedrock of high-fidelity simulations, enabling predictive science
across complex domains such as materials physics, turbulent fluid flow, Earth
systems modeling, and nuclear systems, as outlined above. These models are
grounded in well-understood physical laws and verification and/or validation pro-
tocols, making them indispensable for safety-critical and regulatory-constrained
applications. However, they come with significant computational demands, par-
ticularly for large-scale or long-time simulations.

The committee reiterates that by contrast, foundation models trained on vast
multimodal data sets —including simulation results, sensor data, imagery, and sci-
entific literature —offer scalability, generalizability, and data-driven adaptability.
Rather than viewing foundation models as replacements for traditional methods
in computational science, the committee advocates for a synergistic integration of
the two (Koumoutsakos 2024). Hybrid modeling strategies can fuse the physical
interpretability and robustness of classical solvers with the efficiency and learn-
ing capabilities of foundation models, particularly in multiscale, multiphysics
applications where stand-alone approaches often fall short.

Accelerating Scientific Discovery Through Hybrid Approaches

Foundation models can significantly enhance the entire research life cycle
at DOE national laboratories and user facilities through multiple avenues of
hybridization:

* Simulation Acceleration and Enhancement: Foundation models, trained as
surrogate models, can emulate computationally expensive physics simu-
lations, allowing for accelerated parameter sweeps, ensemble studies,
and real-time forecasting. Applications range from turbulence and fusion
modeling to Earth systems science and high-energy physics. Moreover,
foundation models can discover governing dynamics—such as learn-
ing coefficients in ordinary differential equations or structures in partial
differential equations (PDEs)—directly from data (Ye et al. 2025). This
enables breakthroughs in both forward prediction and inverse problem-
solving (Bodnar et al. 2025; McCabe et al. 2024; Nguyen et al. 2023;
Rahman et al. 2024; Ye et al. 2025).
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* Experimental Data Analysis: DOE facilities generate massive data sets
across diverse modalities. Multimodal foundation models can interpret
these data in real time, performing automated feature extraction, anom-
aly detection, and pattern recognition—for example, identifying material
phases in scattering data (Brodnik et al. 2023). This capability paves the
way for “self-driving” experiments that optimize limited facility time
and dynamically adjust to emergent results, fundamentally transforming
experimental workflows.

* Knowledge Discovery and Hypothesis Generation: With the scientific lit-
erature growing exponentially, foundation models —especially LLMs fine-
tuned on curated corpora such as DOE’s Office of Scientific and Technical
Information repositories (Sakana.Al, 2024; Skarlinski et al. 2025)—can
synthesize findings, identify knowledge gaps, generate novel hypotheses,
and suggest experiment designs. Programs such as the Defense Advanced
Research Projects Agency’s Discovery of Algorithms and Architectures il-
lustrate how LLMs can discover fundamental scientific computing modules,
further validating the utility of Al in hypothesis-driven research (DARPA
2025).

* Autonomous Laboratories: The fusion of foundation models with robotics
and automated platforms unlocks the vision of “self-driving laborato-
ries” that can autonomously design, execute, and interpret experiments
(Skarlinski et al. 2025). These systems promise to dramatically accelerate
research cycles in materials discovery, synthetic biology, and beyond.

Methods of Integration: Hybrid and Agentic Architectures

Foundation model development is progressing toward augmenting tradi-
tional simulations by learning data-driven corrections to reduced-order models.
For example, foundation model-based closure approximations in turbulence
and combustion science could improve fidelity, while in nuclear and Earth sys-
tems modeling, they could enhance accuracy and enable rigorous uncertainty
quantification:

* Data-Driven Corrections: Foundation models can augment traditional
simulations by learning data-driven corrections to approximate or simpli-
fied models. For example, foundation model-based closure approxima-
tions in turbulence and combustion science improve fidelity, while in
nuclear and Earth systems modeling, they enhance accuracy and enable
rigorous uncertainty quantification (Bodnar et al. 2025).
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e [Inference from Traditional Simulations: A direct method of integration
involves generating spatiotemporal simulations using traditional solv-
ers and then using LLMs for inference. Given snapshots of numerical
fields—as either gridded data or imagery —current-generation LLMs can
describe and interpret system behaviors in natural language. This capabil-
ity is further enhanced by combining simulation outputs with symbolic
and textual representations of the underlying physics (McCabe et al. 2023;
Rahman et al. 2024).

* Spatiotemporal Foundation Models: These models, pretrained and fine-
tuned on outputs from traditional solvers, learn spatiotemporal variation
from their training data while enabling rapid forecasts in new contexts.
Their ability to generalize across physics, especially when pretrained
on diverse PDEs and fine-tuned to specific ones, highlights the value of
transfer learning in computational science (Herde et al. 2024; McCabe et
al. 2023; Rahman et al. 2024).

* Agentic Workflows with Reasoning Capabilities: Multimodal LLMs can
orchestrate workflows where Al agents dynamically choose between in-
voking a traditional solver or using a pretrained foundation model. These
agents integrate simulations, mathematical formulations, and natural
language descriptions to perform inference, design studies, or explain
observed behaviors. Advanced techniques such as retrieval-augmented
generation and reasoning further improve performance by grounding
reasoning in contextually relevant information (Gottweis et al. 2025).

Toward a New Scientific Paradigm

The fusion of foundation models with traditional numerical methods repre-
sents more than a computational advance: it constitutes a paradigm shift in how
scientific discovery is conducted. By combining rigorous physical modeling with
the adaptive learning capabilities of modern Al, this hybrid approach opens the
door to faster, more accurate, and more autonomous science.

From accelerating simulations to enabling real-time experimental feedback
and automating hypothesis generation, the integration of foundation models into
DOE’s computational and experimental ecosystem promises to reshape the pace
and scope of scientific innovation (Bodnar et al. 2025; Herde et al. 2024; McCabe
et al. 2023; Nguyen et al. 2023; Ye et al. 2024, 2025).

Conclusion 2-1: Integrating traditional models with foundation models
is proving to be increasingly powerful and has significant potential to
advance computational findings in the physical sciences. These hy-
brid methods leverage the physical interpretability and structures of
classical computational approaches alongside the data-driven adapt-
ability of foundation models. This integration enables the modeling of
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complex multiphysics, multiscale, and partially observed (understood)
systems that challenge traditional approaches both computationally and
mathematically.

Recommendation 2-1: The Department of Energy (DOE) should
invest in foundation model development, particularly in areas of
strategic importance to DOE, including areas where DOE already
has advantages leveraging its unique strengths in those domains.
DOE should also prioritize the hybridization of foundation mod-
els and traditional modeling. Such hybrid modeling strategies can
fuse the physical interpretability and robustness of classical solvers
with the efficiency and learning capabilities of foundation models,
particularly in multiscale, multiphysics applications where tradi-
tional approaches have limitations in capturing the heterogeneity,
complexity, and dynamics of the physical system. DOE should not,
however, abandon its expertise in numerical and computational
methods and should continue investing strategically in software and
infrastructure.

REFERENCES

Adams, B.M., W.J. Bohnhoff, K.R. Dalbey, M.S. Ebeida, J.P. Eddy, M.S. Eldred, R.W. Hooper, et
al. 2020. Dakota, a Multilevel Parallel Object-Oriented Framework for Design Optimization,
Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.13 User’s
Manual. Sandia National Laboratories. https://www.sandia.gov/app/uploads/sites/241/2023/03/
Users-6.13.0.pdf.

Anderson, R., J. Andrej, A. Barker, J. Bramwell, J.S. Camier, J. Cerveny, V. Dobrev, et al. 2021.
“MFEM: A Modular Finite Element Methods Library.” Computers and Mathematics with Ap-
plications 81:42-74.

Ashman, M., C. Diaconu, E. Langezaal, A. Weller, and R.E. Turner. 2024. “Gridded Transformer
Neural Processes for Large Unstructured Spatio-Temporal Data.” arXiv:2410.06731, https://
ui.adsabs.harvard.edu/abs/2024arXiv241006731A, accessed October 1, 2024.

Bodnar, C., W.P. Bruinsma, A. Lucic, M. Stanley, A. Allen, J. Brandstetter, P. Garvan, M. Riechert,
J.A. Weyn, H. Dong, J.K. Gupta, K. Thambiratnam, A.T. Archibald, C.C. Wu, E. Heider, M.
Welling, R. E. Turner, and P. Perdikaris. 2025. “A Foundation Model for the Earth System.”
Nature 641(8065):1180-1187.

Brodnik, N.R., C. Muir, N. Tulshibagwale, J. Rossin, M.P. Echlin, C.M. Hamel, S.L.B. Kramer, T.M.
Pollock, J.D. Kiser, C. Smith, and S.H. Daly. 2023. “Perspective: Machine Learning in Experi-
mental Solid Mechanics.” Journal of the Mechanics and Physics of Solids 173:105231. https://
doi.org/10.1016/j.jmps.2023.105231.

DARPA (Defense Advanced Research Projects Agency). 2025. “DIAL: Mathematics for the Discov-
ery of Algorithms and Architectures.” https://www.darpa.mil/research/programs/mathematics-
for-the-discovery-of-algorithms-and-architectures, accessed July 31, 2025.

Gottweis, J., W.-H. Weng, A. Daryin, T. Tu, A. Palepu, P. Sirkovic, A. Myaskovsky, et al. 2025.
“Towards an Al Co-Scientist.” arXiv:2502.18864 (eprint). https://ui.adsabs.harvard.edu/abs/
2025arXiv250218864G.

PREPUBLICATION COPY —Subject to Further Editorial Correction

Copyright National Academy of Sciences. All rights reserved.


https://nap.nationalacademies.org/catalog/29212?s=z1120

Foundation Models for Scientific Discovery and Innovation: Opportunities Across the Department of Energy ...

24 FOUNDATION MODELS FOR SCIENTIFIC DISCOVERY AND INNOVATION

Herde, M., B. Raoni¢, T. Rohner, R. Kippeli, R. Molinaro, E. de Bézenac, and S. Mishra. 2024.
“Poseidon: Efficient Foundation Models for PDEs.” arXiv:2405.19101. https://ui.adsabs.harvard.
edu/abs/2024arXiv240519101H.

Heroux, M.A., R.A. Bartlett, V.E. Howle, R.J. Hoekstra, J.J. Hu, T.G. Kolda, R.B. Lehoucq, et al.
2005. “An Overview of the Trilinos Project.” ACM Transactions on Mathematical Software
31(3):397-423.

Koumoutsakos, P. 2024. “On Roads Less Travelled Between Al and Computational Science.” Nature
Reviews Physics 6(6):342-344.

McCabe, M., B. Régaldo-Saint Blancard, L. Holden Parker, R. Ohana, M. Cranmer, A. Bietti,
M. Eickenberg, et al. 2023. “Multiple Physics Pretraining for Physical Surrogate Models.”
arXiv:2310.02994. https://ui.adsabs.harvard.edu/abs/2023arXiv231002994M (last revised De-
cember 10, 2024).

Nguyen, T., J. Brandstetter, A. Kapoor, J.K. Gupta, and A. Grover. 2023. “ClimaX: A Founda-
tion Model for Weather and Climate.” arXiv:2301.10343. https://ui.adsabs.harvard.edu/abs/
2023arXiv230110343N.

Rahman,M.A.,RJ. George, M. Elleithy, D. Leibovici, Z. Li, B. Bonev, C. White, et al. 2024. “Pretrain-
ing Codomain Attention Neural Operators for Solving Multiphysics PDEs.” arXiv:2403.12553.
https://doi.org/10.48550/arXiv.2403.12553.

Sakana.Al. 2024. “The Al Scientist: Towards Fully Automated Open-Ended Scientific Discovery.”
https://sakana.ai/ai-scientist.

Skarlinski, M., T. Nadolski, J. Braza, R. Storni, M. Caldas, L. Mitchener, M. Hinks, A. White, and S.
Rodriques. 2025. “FutureHouse Platform: Superintelligent Al Agents for Scientific Discovery.”
FutureHouse. https://www.futurehouse.org/research-announcements/launching-futurehouse-
platform-ai-agents.

Ye, Z., X. Huang, L. Chen, H. Liu, Z. Wang, and B. Dong. 2024. “PDEformer: Towards a Founda-
tion Model for One-Dimensional Partial Differential Equations.” arXiv:2402.12652. https://
ui.adsabs.harvard.edu/abs/2024arXiv240212652Y.

Ye,Z.,Z.Liu, B. Wu, H. Jiang, L. Chen, M. Zhang, X. Huang, et al. 2025. “PDEformer-2: A Versatile
Foundation Model for Two-Dimensional Partial Differential Equations.” arXiv:2507.15409.
https://ui.adsabs.harvard.edu/abs/2025arXiv250715409Y.

PREPUBLICATION COPY —Subject to Further Editorial Correction

Copyright National Academy of Sciences. All rights reserved.


https://nap.nationalacademies.org/catalog/29212?s=z1120

Foundation Models for Scientific Discovery and Innovation: Opportunities Across the Department of Energy ...

Exemplar Use Cases of
Foundation Models

DEPARTMENT OF ENERGY’S ROLE IN
FOUNDATION MODEL DEVELOPMENT

The strategic focus of a Department of Energy (DOE)-wide foundation
model initiative remains a subject of debate, requiring the department to balance
its broad application space, navigate the trade-offs between leveraging past in-
dustry advancements, address the unique national security imperatives of DOE,
and ensure responsible stewardship of taxpayer resources, particularly in light of
the opportunity costs associated with prioritizing artificial intelligence (AI) over
more mature technologies.

There are an ever-increasing number of efforts across DOE national laborato-
ries integrating Al and foundation models into their research programs. Naturally,
one of the key targets is energy-related applications ranging from electric grids
to nuclear fusion. A primary consideration is the perception that DOE cannot
compete with the head start in technology maturation and large market share
currently held by large companies. In the foundation model market, leaders such
as Microsoft (via OpenAl), Google/Gemini, Amazon Web Services, Meta, and
Anthropic each back efforts with investments ranging from $10 billion to more
than $75 billion in funding and infrastructure (Fernandez et al. 2025), a scale
that DOE would be hard pressed to match. This raises a fundamental question
of whether DOE should focus on collaborations with industry or focus on a
complementary space based on DOE’s unique mission in curating foundational
science while improving national security. The committee believes that DOE
has reason to develop foundation models internally, in addition to private-sector
leadership, because the needs of the government (whether for national security
or continued scientific preeminence) will not be met by private interests. The two
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endeavors (private and public) do not compete —they complement each other and
can leverage each other.

Conclusion 3-1: Commercial industry has driven rapid progress in
developing large language model-based foundation models, yielding a
robust ecosystem of tools and capabilities. As demonstrated by, for ex-
ample, the collaboration between Los Alamos National Laboratory and
OpenAl, DOE can leverage industry advances, findings, and collabora-
tions as it develops foundation models for science and conducts coor-
dinated DOE-wide assessments to identify appropriate opportunities.

DOE is the largest single federal sponsor of scientific research in the United
States, providing approximately $16 billion in research and development (R&D)
funding in fiscal year (FY) 2023, which represents roughly 8 percent of total
federal R&D obligations (Blevins 2022). Through its Office of Science, DOE
supports approximately 40 percent of all federal basic research in the physical
sciences, and an estimated 44 percent of federal basic research in computer and
information sciences, including foundational work in nonconvex optimization,
probabilistic methods, and large-scale high-performance computing (NCSES
2023). Although DOE is unlikely to match the pace or scale of commercial
product development, it retains clear strategic advantages in five areas: (1) a
world-class scientific workforce in computational science; (2) access to large-
scale, science-focused, and experimental computing hardware; (3) stewardship
of unique experimental facilities and open and controlled or classified scientific
data; (4) capability to tackle long-term, high-risk, high-reward scientific prob-
lems; and (5) access to unique scientific data that may not be easily reproduced
and which can be expanded as synthetic data may be necessary for training future
foundation models.

Despite a mismatch in funding allocations, DOE’s Exascale Computing Proj-
ect (ECP)! guided the development, procurement, and construction of the Frontier
and Aurora supercomputers at a total cost of approximately $1.7 billion. Frontier
achieves a peak performance of 1.35 exaflops, and Aurora reaches approximately
1.01 exaflops. For a rough comparison, a machine like Aurora could train a model
like GPT-4 on the order of ~200 days, suggesting that the best option for DOE
is not to directly compete in the same general-purpose paradigm. With recent at-
tention toward the disruption of DeepSeek, which some analyses suggest offered
a ~10x increase in efficiency, existing ECP-funded resources become arguably
more competitive, particularly when buoyed by the highly skilled workforce
represented by the national laboratories. In fact, ECP-funded resources have the
potential to train foundation models from scratch, deploy stochastic optimization
algorithms at scale, or run multiagent simulations in real time. This is evidence
that the field is advancing in a direction that could make DOE’s resources feasible
for the training of foundation models for science.

! See https://www.exascaleproject.org.
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When comparing DOE and industry capabilities, one of the most significant
differences is the scale and richness of physical and simulation data generated
by DOE’s network of user facilities, nuclear weapons—testing archives, ongoing
experimental campaigns, and high-performance computing facilities. These data
span both classified and unclassified domains and present unique opportunities
for DOE-relevant advances in foundation models. New modes of inquiry that
have become successful in the industrial setting (e.g., Google DeepMinds alpha-
evolve) have great potential for DOE applications. A central technical challenge
is whether secure training methods, such as federated learning, can be designed
to mathematically preclude the leakage of sensitive or controlled information. If
so, this could enable the construction of scientific foundation models that operate
across heterogeneous and compartmentalized data sources. If not, certain classes
of model architectures may prove fundamentally incompatible with DOE’s mis-
sion constraints.

Conclusion 3-2: DOE retains clear strategic advantages in five ar-
eas: (1) a world-class scientific workforce in computational science;
(2) access to large-scale, science-focused, and experimental comput-
ing hardware; (3) stewardship of unique experimental facilities and
open and controlled or classified scientific data; (4) capability to tackle
long-term, high-risk, high-reward scientific problems; and (5) access
to unique scientific data that may not be easily reproduced and which
can be expanded as synthetic data may be necessary for training future
Jfoundation models.

Many of DOE’s experimental platforms are already compatible with re-
mote operation and automation. This includes user-facing beamlines, additive
manufacturing facilities, and autonomous platforms for chemical synthesis and
materials fabrication. At the same time, recent advances in retrieval-augmented
generation (RAG) have introduced new strategies for connecting large language
model (LLM) outputs with authoritative external sources. DOE could consider
a coordinated program, either independently or in partnership with academia
and industry, in which traditional physics-based simulations or experiments are
launched in an agentic loop and used to refine LLM reasoning. This concept is
particularly viable in diverse domains such as small-molecule chemistry and
mature simulation codes (e.g., computational fluid dynamics, electromagnetism,
molecular dynamics). An important example is the recent effort by researchers
at Lawrence Livermore National Laboratory to combine Al with fusion target
design by deploying Al agents on two of the world’s most powerful supercom-
puters to automate inertial confinement fusion simulations and thus accelerate
experiments. Additional potential benefits of Al in the quest for fusion energy
are provided in the next section.

However, in many scientific contexts, human expertise remains essential for
initiating, interpreting, and validating results. Discovery via the use of experimental
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or computational platforms relies crucially on the deep bench of technical exper-
tise at the laboratories that can be rapidly tapped to analyze previously unseen
scenarios in high-consequence national security settings with limited time to solu-
tion. In these settings, foundation models may act as an accelerant for analysis,
but are currently not viewed as sufficiently reliable for trustworthy application.

HUMAN IN THE LOOP AND ARTIFICIAL
INTELLIGENCE FOUNDATION MODEL AUTONOMY

Human oversight remains essential in deploying and utilizing foundation
models, especially in high-risk or high-impact scientific and engineering contexts.
Foundation models enhance the productivity of researchers by, for example, ac-
celerating targeted literature reviews, optimizing code and algorithm design, and
dramatically reducing the time required to prototype and validate solutions. By
automating many of the routine or well-established steps in the research pro-
cess, foundation models allow scientists and engineers to focus on higher-level
reasoning and innovation. However, it is important to keep in mind that these
capabilities come with a significant caveat: foundation models are capable of
generating both highly sophisticated statements and nonsense. Although they can
produce novel findings and accurate solutions, they can just as easily generate
plausible-sounding but incorrect or misleading outputs. For this reason, and for
the foreseeable future, a human-in-the-loop approach is desirable (even essen-
tial), ensuring that domain expertise and critical thinking guide the use and in-
terpretation of model outputs. In this context, we mention that there are different
levels or schemas of handoff, that is, the transfer of decision-making authority
or control between a human and a foundation model (or agentic environment).
The nature of the handoff depends on both the confidence in the model’s output
as well as on the level of criticality (risk) associated with the decision one is
trying to make. Importantly, this concept and associated schemas will evolve as
foundation models become more mature and trustable (see Chapter 5 for details
on quantifiable confidence).

A powerful example of this human—Al interaction is DeepMind’s Al co-
scientist work (Gottweis and Natarajan 2025), a multiagent system built on
Gemini, designed to assist scientists, engineers, and researchers in general in
formulating hypotheses, conducting literature reviews, and building experimental
frameworks. In this work, specialized agents operate asynchronously to gener-
ate, evaluate, and fine-tune scientific hypotheses. In several instances, this col-
laborative approach has made it possible for scientists to interact easily and very
naturally with A, providing inputs, prompts, or feedback to guide research, with
final oversight and authority remaining with the investigator. For example, the
Al Co-Scientist has demonstrated its potential impact in biomedical research,
suggesting novel approaches to inhibit disease progression in conditions, such as
liver fibrosis, that showed promising potential.
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Another compelling example of human—AlI interaction enabled by founda-
tion models is the use of Al copilots in software development. Importantly, this
approach is quickly becoming the norm in modern software engineering. For
example, tools such as Cursor, which is built on top of LLMs and fine-tuned for
code generation, offer real-time support in writing, debugging, and refactoring
code (Anysphere n.d.). These systems serve as smart and efficient collaborators,
helping developers implement complex algorithms and explore alternative code-
design patterns. Some of these tools integrate seamlessly with developer work-
flows, allowing users to query codebases in natural language, generate multifile
implementations, and suggest algorithmic solutions from minimal user prompts
and/or examples. Although these tools do not replace developers, they act as ac-
celerators, cutting down on repetitive and established coding tasks. As a result,
engineers can focus on architectural decisions and problem solving. Notably,
this also lowers software skill requirements. Again, the human remains in the
loop; although the model may generate functional code, oversight is mandatory
to validate correctness.

This paradigm illustrates how the synergy between human expertise and
foundation model capabilities can lead to more efficient, reliable, and responsible
scientific outcomes.

Conclusion 3-3: While Al systems can exceed human performance in
many ways, they can also fail in ways a human likely never would. For
this reason, the qualification of Al will be necessary for decision making
and prediction in the presence of uncertainty.

Based on the discussion above, the integration of foundation models into
scientific and engineering pipelines raises concerns about the future of employ-
ees working in these sectors. In fact, although these models boost productivity,
they put at risk those roles that are focused on repetitive, manual, or routine
tasks. Roles dedicated to basic literature reviews, boilerplate coding, standard
documentation, and straightforward data analysis could be significantly affected.
Importantly, in many cases, foundation models could be able to perform at scale
and with more reliability than that of a human.

On the other hand, roles that require deep domain expertise and critical judg-
ment (e.g., principal investigators, senior engineers, code architects, and regula-
tory or quality assurance engineers) are less likely to be removed. In fact, because
of the need for human oversight when it comes to the interpretation of output of
foundation models, these roles become even more valuable, as they are funda-
mental in verifying and building on top of what Al-based machines can achieve.

In short, foundation models potentially introduce a paradigm shift, where
humans act as big-picture strategists and critical evaluators of Al-generated out-
puts, ensuring that they are technically correct and aligned with larger scientific
and engineering goals.
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Recommendation 3-1: The Department of Energy (DOE) should
study and develop the fusion of artificial intelligence (AI) and hu-
man capabilities. At present, Al systems handle the repetitive, man-
ual, or routine tasks, and are starting to show abilities to reason. As
Al becomes more capable, deep analysis and strategy recommenda-
tions become feasible, but humans should maintain oversight and
validation, particularly for qualification and other aspects of DOE’s
mission.

Recommendation 3-2: The Department of Energy should evaluate
the capabilities and risks of agentic artificial intelligence (AI) sys-
tems for its core applications. In particular, the committee advocates
exploring agentic Al for developing autonomous laboratories for
scientific discovery, decision making, and action planning for high-
stakes applications.

SCIENTIFIC AND ENGINEERING APPLICATIONS

In the context of scientific and engineering applications, foundation models
(FMs) trained on observations, scientific literature, databases, as well as ex-
perimental results and outputs of simulations can be used to support hypothesis
generation. In engineering, the use of FMs is becoming predominant in design
settings, specifically in tasks such as CAD (computer-aided design) generation.
These applications demonstrate how FMs can serve as intelligent copilots for
researchers and engineers, enhancing productivity and enabling new modes of
discovery.

DOE’s mission encompasses many areas including materials science, chem-
istry, physics, energy, Earth systems, and high-performance computing, to name
a few. DOE also supports national security missions such as stewardship of the
nation’s nuclear stockpile. Because DOE’s mission includes so many scientific
and engineering disciplines, it is only possible to provide a few examples below
to illustrate how FMs might accelerate progress.

Materials Science

Materials science seeks to understand and control the relationships between
structure, processing, properties, and performance across multiple spatiotempo-
ral scales. FMs trained on experimental data, literature, and simulations offer a
promising path to accelerate discovery —namely, through property prediction,
retrosynthesis, and molecular generation. These models can predict properties,
generate candidate structures, and guide automated experiments, reducing reli-
ance on costly first-principles calculations (Berger 2025; Pyzer-Knapp et al.
2025). When coupled with high-throughput synthesis, they could transform ma-
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terials discovery from a decades-long process into an iterative, data-driven cycle.
Recent advances include MatBERT, a materials science transformer developed
at Lawrence Berkeley National Laboratory (Trewartha et al. 2022), and IBM’s
open-source FMs for sustainable materials design (Martineau 2024). We highlight
some areas in which FMs are already being used to significant impact—namely,
property prediction, retrosynthesis, and molecular generation—and also look to
the future to outline areas that we believe are key to continuing to unlock value.
These areas hinge on exploiting the natural multimodality and multifidelity char-
acteristics of materials data through increasingly powerful and elegant modeling
approaches. The application of FMs faces challenges such as vast chemical and
structural design spaces, bridging scales, and integrating experimental, com-
putational, and theoretical insights into predictive frameworks with quantified
uncertainties (Morgan and Jacobs 2020).

Battery Technology

In battery technology, FMs are accelerating innovation from materials to
management. Researchers are developing these models to rapidly screen and
predict the properties of novel battery materials, such as new electrolytes, thus
speeding up the discovery process (Xu et al. 2024). Furthermore, they are be-
ing used to create more sophisticated battery management systems that provide
highly accurate predictions of a battery’s state of health and remaining useful life
(Chan et al. 2025). By understanding the deep patterns of battery degradation,
these models are helping to design safer, longer-lasting, and more efficient energy
storage solutions for everything from electric vehicles to grid-scale applications.

Advanced Manufacturing

Advanced manufacturing (AM) uses computer-controlled, automated pro-
cesses to produce complex components relevant to DOE’s mission. This type of
manufacturing distinguishes itself from conventional mold-based or subtractive
manufacturing in that it enables rapid prototyping, cost-effective experimentation,
and just-in-time production of complex components as a single unit (e.g., rocket
nozzles). AM is increasingly vital to DOE and its National Nuclear Security Ad-
ministration (NNSA) for both energy science and national security missions, with
the goal of creating parts that are “born qualified” for their intended use (Boyce
2016). Moreover, FMs offer promising solutions by integrating heterogeneous
data to support tasks such as anomaly detection, process optimization, and predic-
tive control (Autodesk 2025; Era et al. 2025; NVIDIA n.d.; Zhang et al. 2025).

Key challenges remain, as AM materials are often out of thermodynamic
equilibrium, leading to undesirable properties such as low ductility or fracture
toughness (Forien 2023). Developing digital twins, computational replicas of AM
processes, is a major research focus across DOE and NNSA labs (LLNL n.d.) and
an area that is being transformed by the adoption of FMs.
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Weather and Earth Systems

Predicting weather and understanding Earth systems is critical to decision
making (Conti 2024). Large-scale simulations of weather remain limited in
the range of their time horizons and spatial resolutions due to computational
constraints. FMs offer solutions by developing accurate parameterizations for
subgrid-scale processes such as clouds and turbulence, identifying patterns,
and improving understanding of climate dynamics. FMs for Earth systems and
weather are pretrained on massive, heterogeneous Earth-system data sets and are
fine-tuned for diverse downstream tasks. Data-driven weather models, such as
GraphCast (Lam et al. 2023) are becoming central to several FMs that involve
localized forecasts and can significantly impact applications such as agriculture
and power grids. Aurora (Bodnar et al. 2025), a 1.3-billion-parameter model pre-
trained on over 1 million hours of multimodal geophysical data, outperforms tra-
ditional numerical forecasts in global weather forecasting, air quality monitoring,
ocean wave prediction, and tropical cyclone tracking, all at lower computational
cost. Similarly, Prithvi WxC (Schmude et al. 2024), a 2.3 billion-parameter trans-
former model trained on 160 atmospheric variables from MERRA-2, is designed
for multitask adaptation, including downscaling, extreme-event estimation, and
parameterization. Projects such as ORBIT (Wang et al. 2024), a hybrid trans-
former model with 113 billion parameters for Earth system predictability, hold
potential to accelerate climate projections, improve extreme-event forecasts, and
unify disparate Earth-system modeling tasks. Key challenges include integrating
real-time data assimilation, maintaining physical consistency over long predic-
tion horizons, and scaling to capture multiscale interactions across atmosphere,
ocean, land, and cryosphere.

Fusion

The quest for fusion energy involves extremely complex plasma physics
and engineering challenges. FMs can accelerate the computationally demanding
simulations of plasma behavior (e.g., using codes such as X-Point included Gy-
rokinetic Code) (Churchill 2024), help analyze the vast amounts of diagnostic
data from experiments such as Doublet III D-Shaped or the International Ther-
monuclear Experimental Reactor (see also the agenda for the Simple Cloud-
Resolving E3SM Atmosphere Model), assist in designing reactor components
tolerant of extreme conditions, and potentially contribute to real-time plasma
control systems needed for sustained fusion reactions. We believe that this trend
will continue. In inertial confinement fusion, Al and fine-tuned FMs can help
design reproducible high-fusion-gain targets. These models are pretrained on
vast and diverse data sets including experimental data from tokamaks and mas-
sive simulations. They are fine-tuned for downstream tasks, such as predicting
plasma disruptions, optimizing control systems in real time, improving diag-
nostic interpretation, and accelerating the design cycle for reactor components
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(Badalassi 2023; Churchill 2024; DOE 2024). In magnetic confinement experi-
ments, such models are being explored for real-time control to adjust magnetic
fields and mitigate instabilities like tearing modes, which can severely limit
performance (DOE n.d.). Beyond control, LLMs augmented with (RAG are
being used to quickly access historical data and identify similar experimental
conditions to guide new trials (Poore 2023). Furthermore, the design of durable
fusion materials and tritium-breeding blankets that can withstand extreme re-
actor environments is being addressed by integrating foundation models with
high-performance computing to create comprehensive simulation environments
(Badalassi et al. 2023; DOE 2024; PNNL n.d.).

The committee would like to stress some of the dangers of adapting an ap-
plication too quickly. In the past 2 years, several groups have sought to replace
costly plasma simulations with autoregressive neural surrogates that evolve hy-
drodynamic and electromagnetic fields without direct partial differential equation
solutions (Carey et al. 2024, 2025; Galletti et al. 2025; Gopakumar et al. 2023;
Poels et al. 2023). While these are important first steps, there are fundamental
challenges that must be addressed before such approaches can form the basis
of a true FM for fusion, comparable to those emerging in weather forecasting.
Current efforts rely heavily on Fourier neural operators (FNOs), which cannot
readily accommodate the complex geometries required for magnetic confinement
fusion. Moreover, autoregressive roll-outs are prone to compounding errors over
long prediction horizons (McCabe et al. 2023). This issue is particularly acute
in fusion, where predictions must preserve gauge symmetries and conservation
laws; this is well known in conventional plasma simulation contexts within the
DOE community (Sharma et al. 2020). Off-the-shelf FNOs and transformer
models lack these structural guarantees. A viable FM for fusion will therefore
require new approaches that ensure long-term stability and strict preservation of
physical structure.

Stockpile Stewardship

The U.S. Stockpile Stewardship Program (SSP), managed by the NNSA and
its nuclear enterprise, aims to maintain the safety, security, and reliability of the
nuclear arsenal without resuming underground testing. The national laboratories
involved in these efforts have made significant progress using machine learning
to obtain a deeper understanding of the relevant science and are increasingly
exploring the use of FMs. These FMs are tuned with classified weapons science
knowledge to gain a deeper understanding of the physics involved, thereby ac-
celerating progress across the entire program. This represents a substantial shift
toward data-driven maintenance of the stockpile.

One critical area for FM deployment is stockpile surveillance, the continuous
monitoring of the health of the arsenal. FMs can be fine-tuned using a wealth
of past findings and diagnostic images to rapidly assess potential deleterious
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changes, helping experts quickly distinguish between changes that are not ma-
terial to future performance and those that require intensive investigation via
simulation and experiment. Furthermore, FMs are essential in designing digital
twins that predict component failure over time—an especially difficult task. By
measuring a part’s response to its dynamic environment and assimilating these
data, an FM can construct a digital twin to provide advance warnings of impend-
ing failure, such as fracture due to fatigue, allowing for proactive maintenance.
There is significant overlap with areas such as structural health monitoring that
may be useful to adopt in this effort (see following paragraph).

Despite their potential, the use of FMs for stockpile stewardship involves
significant risks and challenges. The most prominent concern is security, as clas-
sified information must be strictly controlled and only provided to staff with the
necessary “need to know” clearance, a protocol that must be maintained even
within secure laboratory confines. Another challenge is preventing overreliance
on the guidance provided by FMs, as this could inadvertently lead to poor design
decisions regarding weapon components. The DOE laboratories involved in the
SSP are well aware of these issues and are actively working to mitigate these
risks.

Structural Health Monitoring

FMs are gaining significant attention for structural health monitoring and
infrastructure surveillance, extending their utility from high-security areas such
as the nuclear SSP to civilian applications such as bridges, viaducts, and high-
rise buildings. FMs can absorb massive, unlabeled data sets derived from sen-
sors—including accelerometers for vibration monitoring, imaging diagnostics,
and Internet of Things devices. This generalized pretraining allows the models
to learn robust, universal representations of structural behavior. Downstream
tasks include anomaly detection and traffic load estimation on real-world civil
infrastructure data (Benfenati et al. 2025; Bormon 2025; Hassani et al. 2024).
A key application of FMs in civil infrastructure is the creation of intelligent,
high-fidelity digital twins. By continuously assimilating real-time data from the
physical structure (the “real twin”), FMs enable the virtual replica to accurately
predict degradation, fatigue, and component failure over time. The integration
of FMs into digital twins is an active area of investigation, aiming to reduce
the significant manual effort typically required to create and maintain these
models for cyber—physical systems (Ali et al. 2024). Although this technology
promises enhanced safety and optimized resource allocation by distinguishing
critical changes from nonmaterial ones, the field faces challenges related to data
security, ensuring the fidelity and trustworthiness of FM-generated predictions,
and managing the large computational resources required for both training and
real-time inference.
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Combustion

Combustion systems, including engines, gas turbines, furnaces, and scram-
jets, show highly unsteady, multiscale dynamics. These dynamics stem from
complex interactions among turbulence, multiphase, and reacting flows. Cur-
rent physics-based simulations are too costly for extensive design or operating
space exploration and cannot directly use real-world experimental data. FMs
are increasingly adopted for combustion research by leveraging vast heteroge-
neous data sets, such as direct numerical simulations, large-eddy simulations,
and experimental diagnostics, to learn universal representations of combustion
phenomena (Ihme and Chung 2024). FMs can assist in the acquisition of new
insights into the physics controlling flame ignition, burning rate, flame stability,
and emissions in high-pressure premixed combustion of various fuels, including
hydrogen. These developments are crucial for the improvement of multifidelity
science-based reduced-order models, methods, and digitalization, ultimately used
by U.S. industry and its clients for optimal design and operation, near-real-time
risk mitigation, and maintenance. Examples of ongoing efforts include a knowl-
edge processing framework for combustion science that integrates FMs with
RAG to systematically parse literature, data sets, and simulation results, enabling
automated reasoning and accelerated model development (Sharma and Raman
2024). The interfacing of combustion and machine learning is mostly focused
now on adopting supervised and semi-supervised machine learning techniques
to combustion problems,

Recent progress in physics-informed machine learning provides a pathway
to embedding physical constraints directly into FMs, making them suitable for
high-fidelity combustion simulations (Cao et al. 2026). The adoption of an in-
verse modeling approach (Karnakov et al. 2024) and the extension of these efforts
in order to account for proper validation and verification (McGreivy and Hakim
2024) within an FM framework holds great potential for combustion science, an
area central to the mission of DOE.

National Security

In addition to the potential benefits described above, FMs can bolster other
national security missions where DOE plays an important role:

* Nonproliferation and threat detection. FMs can process large, hetero-
geneous data sets (e.g., satellite imagery, sensor data) to identify nuclear
proliferation activities or emerging threats.

e Strategic analysis. They can assist analysts by synthesizing information
from technical, geopolitical, and open-source materials to support strate-
gic decision making.
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FMs offer powerful tools for managing and securing energy infrastructure,
such as the following:

e Grid management and optimization. FMs trained on operational data,
weather patterns, and energy markets can enhance load forecasting, pre-
dict renewable generation (solar, wind), and optimize grid operations for
efficiency and stability.

* Resilience and threat mitigation. By analyzing complex system inter-
dependencies, FMs can identify vulnerabilities to physical threats (e.g.,
extreme weather) or cyberattacks. They can also assist in developing re-
sponse and recovery strategies, complementing planning tools such as the
North American Energy Resilience Model. The concept of “GridFMs”—
FMs trained on diverse grid data—could significantly advance predictive
capabilities, especially for cascading failure scenarios.

Although offering important benefits, FMs also pose risks if misused. The
adversarial use of FMs, particularly LLMs, presents significant security risks that
can be broadly summarized in two categories: attacks targeting the model itself
and attacks leveraging the model as a weapon.

Attacks against the model exploit its vulnerabilities to subvert its intended
function or extract sensitive data. This includes prompt injection (or “jailbreak-
ing”), where an attacker crafts input to bypass safety filters and force the model
to generate harmful or restricted content. Another major threat is data poisoning,
which occurs when malicious data are subtly inserted into the training set, creat-
ing hidden backdoors or permanently degrading the model’s accuracy. Finally,
risks such as model inversion and model stealing compromise confidentiality by
allowing adversaries to reconstruct sensitive training data or illegally copy the
model’s proprietary intelligence.

The second major risk involves using powerful FMs to accelerate and scale
traditional cyberattacks. Adversaries leverage these tools to generate highly con-
vincing and personalized phishing e-mails and synthetic media (deepfakes),
vastly increasing the success rate of social engineering. FMs also lower the bar-
rier for technical attacks by helping actors write and optimize malicious code
or rapidly identify software vulnerabilities, making advanced cyberthreats more
common. Furthermore, the complexity of integrating these models into larger
systems creates new supply chain risks. For example, a successful prompt injec-
tion against an LLM that is integrated with an external tool (i.e., a database) can
be used to execute a traditional command injection attack against the connected
system, demonstrating that the AI model itself can become a single point of fail-
ure and a gateway to broader network compromise.

Users of FMs should invest in Al assurance, red teaming, and develop-
ment of countermeasures against adversarial applications of FMs, aligning with
strategies such as Advance Simulation and Computing’s Artificial Intelligence
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for Nuclear Deterrence program and the Frontiers in Artificial Intelligence for
Science, Security and Technology’s trustworthy Al pillar.

Recommendation 3-3: To address potential security risks arising
from the adversarial use of foundation models, the Department of
Energy should explore strategies for artificial intelligence assurance,
red teaming, and development of countermeasures.
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Strategic Considerations and
Directions for Department of
Energy Foundation Models

Many Department of Energy (DOE) missions demand rapid analysis and
decision making under urgent national security or economic constraints. Geo-
political instability can abruptly disrupt access to critical materials essential for
defense systems, requiring the swift identification and qualification of substitutes
(Dingreville et al. 2024). Shifts in global manufacturing or adversaries’ adop-
tion of advanced technologies often force DOE programs to adapt legacy tools
and processes to new material systems where empirical data may be scarce and
existing models unreliable. Similarly, analysts must forecast the outcomes of non-
proliferation or emergency scenarios constrained by complex physical dynamics,
such as weather evolution or blast propagation (EoP 2022). These challenges
conflict with the traditional trial-and-error discovery cycle that still dominates
materials development and qualification. Recent work highlights how data-driven
foundation models, integrated with physics-based simulations, can sharply com-
press these timelines from years to days by guiding targeted experiments and
enabling high-fidelity predictions of novel engineered systems (Frey et al. 2025).

The national laboratories hold deep institutional expertise, embedded in their
workforce, legacy data sets, and extensive experimental and modeling infrastruc-
ture. Yet the sheer scale of the DOE system, characterized by siloed specialized
knowledge and the complexity of coordinating a large, distributed workforce,
can be fundamentally misaligned with the speed and flexibility required for rapid
decision making. Foundation models pose a unique opportunity to automate the
coordination of personnel, user facilities and other experimental infrastructure,
and historical data to address this long-standing issue of institutional inertia.
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Conclusion 4-1: Many DOE missions demand rapid analysis and deci-
sion making under urgent national security or economic constraints.
While the national laboratories hold deep institutional expertise—em-
bedded in their workforce, legacy data sets, and extensive experimen-
tal and modeling infrastructure—the sheer scale of the DOE system,
characterized by siloed specialized knowledge and the complexity of
coordinating a large, distributed workforce, can be misaligned with the
agility required for decisive action. Development of foundation models
for this purpose poses a unique opportunity to address rapid analysis
and decision making.

Recommendation 4-1: The Department of Energy should explore
the use of foundation models to accelerate situational understanding
by unifying dispersed, siloed, and diverse multimodal data sources
as input to decision-making frameworks across heterogeneous
environments.

MATERIAL INFORMATICS AND NEAR-
AUTONOMOUS SCIENTIFIC PLATFORMS

In contrast to industrial AI, DOE invested early in material informatics and
high-throughput experimental data curation campaigns to build unique access to
data sets, through the Material Genome Initiative and other efforts. By combin-
ing advanced Al models, high-performance computing, and curated experimental
data, materials informatics can dramatically reduce the search space for viable
material substitutes or processes. Recent successes demonstrate this potential: for
example, generative machine learning approaches have identified candidate alloy
systems that reduce dependence on critical rare Earth elements while preserving
key performance properties (Dingreville et al. 2024). In another instance, Mi-
crosoft researchers screened over 30 million hypothetical compounds to identify
new battery cathode chemistries that could cut lithium demand by as much as
70 percent; a discovery pipeline that traditionally would have required years
of sequential lab work (Baker 2024). Given DOE’s strong software ecosystem,
they are uniquely positioned to combine existing efforts where high-throughput
fabrication and characterization can be integrated with simulators and knowledge
graphs encoding the literature to rapidly identify candidate alternatives for critical
materials, processes for manufacturing novel materials, and tools for predicting
new materials in poorly understood regimes.
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FEDERATED COMPUTING AND
DEPARTMENT OF ENERGY FACILITIES

Among DOE’s most unique and critical resources are its large-scale user
facilities, specialized manufacturing foundries, high-performance computing
centers, and shared experimental platforms. Many of these facilities are already
equipped with an astronomical number of sensors, generating enormous amounts
of data that could be exploited for scientific discovery and process optimization.

Advanced manufacturing facilities such as the Kansas City Plant and Y-12
National Security Complex offer unique opportunities for tailored process im-
provements if information can be analyzed in a decentralized manner while main-
taining necessary controls on classified or sensitive data. The Office of Science
has previously invested in federated learning approaches to develop distributed
machine learning policies across fleets of assets, including user facilities and
other systems, with theoretical guarantees of differential privacy. Related efforts
have explored how advanced manufacturing processes, such as metal additive
manufacturing, can be coordinated across identical machines operating at mul-
tiple sites where local conditions affect performance.

There is now a significant opportunity to integrate these federated systems
with foundation models that can process distributed data streams or coordinate
physical processes across heterogeneous environments. Such models could take
multiple forms: large language models (LLMs) that augment scientists’ ability
to manage complex distributed systems; agent-based frameworks that execute
control policies or distributed data processing; or real-time physics simulators
that interpret and contextualize sensor data at scale.

CURATION AND TRANSLATION
OF SPECIALIZED KNOWLEDGE

As DOE’s workforce turns over, the challenge of maintaining legacy weap-
ons systems and associated hardware or software tools becomes increasingly
burdensome; frequently, a single scientist may hold a disproportionate amount
of expertise on a given component or system. As staff transition to retirement
or alternative career paths, their hard drives may contain vast swaths of data,
simulation configuration files, and source code that would take substantial time
and financial investment to reproduce. Simultaneously, as new staff are hired, it
is broadly understood that there is a steep learning curve to train on the deeply
technical software and modeling frameworks used across the labs. Foundation
models offer a technique to automate the consolidation of existing knowledge and
can be used in a copilot configuration to train new members of the workforce,
particularly in legacy programming languages or hardware systems that are rarely
taught in contemporary university programs.
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MULTIMODAL ARTIFICIAL INTELLIGENCE
FOR PHYSICS-BASED PREDICTION

Some of the most promising demonstrations of Al-augmented physics simu-
lation have emerged in short-term weather forecasting, where ubiquitous reanaly-
sis data have enabled models that can deliver real-time predictions on a single
graphics processing unit, dramatically reducing the computational cost compared
to conventional partial differential equation—based solvers at exascale. This cre-
ates strategic opportunities to adopt these tools to enhance data-driven decision
making and to integrate them into existing physics-based modeling campaigns.

Unique to DOE’s mission is the requirement to fuse weather prediction with
additional sensing modalities relevant to national security. For example, nonpro-
liferation and counter-terrorism tasks often rely on combining weather models
with satellite imagery and other geospatial data. Early industry examples, such as
Microsoft’s real-time weather foundation models, demonstrate that these models
can serve as effective multitasking platforms that generalize well to satellite data
streams and other remote sensing tasks.

Beyond this immediate application, the prevalence of diverse scientific data
across DOE highlights an opportunity to advance a distinctive form of mul-
timodal learning, extending beyond the text, audio, and video focus common
in commercial Al. For example, in stockpile stewardship, it is often necessary
to fuse heterogeneous material characterization data—such as X-ray diffrac-
tion, electron microscopy, user facility measurements, and high-fidelity simula-
tions— with knowledge graphs and other structured sources, including classified
information. Developing foundation models capable of reasoning across such
multimodal scientific data streams could establish a unique capability aligned
with DOE’s national security and scientific missions.

INTEGRATING THE DEPARTMENT OF
ENERGY SCIENTIFIC SOFTWARE STACK

While large industrial AT companies have deep expertise in first-order op-
timizers, automatic differentiation, and other numerical methods central to ma-
chine learning, DOE remains a global leader in advanced scientific computing,
including large-scale linear algebra; high-performance numerical solvers; higher-
order, structure-preserving, and large-scale constrained optimization libraries;
and frameworks for discretizing the partial differential equations that underpin
scientific simulation. There is a major opportunity to bridge this substantial in-
vestment in foundational scientific software with the next generation of founda-
tion models, whether developed by industry or within DOE itself.

As machine learning was initially applied to scientific problems, there was
a reluctance within DOE to compete with TensorFlow or PyTorch. At this point,
libraries are relatively mature, and open-source libraries such as Trilinos could
serve a valuable role in developing lightweight wrapper libraries to facilitate the
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interfacing of production codes with LLMs. Several notable DOE codes such as
MFEM and Albany have begun exposing automatic differentiation and adjoint
calculations in a manner that could be accessed by an LLM (MFEM n.d.; Salin-
ger et al. 2016). DOE has invested in higher-level runtime systems that simplify
the programming of distributed-memory environments. Frameworks such as
Charm++/AMPI (Kale and Krishnan 1993), Legion (Bauer et al. 2012), UPC++
(Bachan et al. 2019), Global Arrays (Nieplocha et al. 1994), and HPX (Kaiser
et al. 2014) provide hardware-agnostic abstractions for communication, load
balancing, and task scheduling in parallel computing; similar abstractions that
facilitate the scheduling of agentic actions or simulation queries for large-scale
MPI-style, either as directed by or to build a foundation model, would have value.

A primary function of foundation models is to compress the large corpus
into a latent representation that supports multiple downstream tasks. DOE may
play a valuable role developing open-source software tools supporting scientific
inference from a pretrained latent space. For example, although machine-learned
potentials have been widely successful, their implementation within production
molecular dynamics simulators such as LAMMPS is often ad hoc, just-in-time—
based, and suboptimal in performance. There is a need for a universal library that
can distill these classes of data-driven computational kernels into performant, po-
tentially Kokkos-accelerated modules that can be readily deployed in production
codes. This opportunity extends beyond LAMMPS to any simulator that would
extract data-driven models from a central, pretrained foundation model.

AGENTIC ARTIFICIAL INTELLIGENCE

In the past year, agentic Al has surged as a means of using LLMs to launch
external agents to explore hypotheses or improve/verify responses. DOE main-
tains a collective $407 million per year in open-source code (Shrivastava and
Korkmaz 2024), with the Exascale Computing Project alone representing 70
distinct scientific codebases. There is a unique opportunity for DOE to expose
automatic differentiation “hooks” in their open-source libraries to allow LLMs
to couple directly to production codes, integrating robust numerical prediction
into the training process. This would allow LLMs to both perform simulation and
calculate loss functions to support holistic end-to-end training through reliable
and mature DOE simulators. Several DOE codes already expose adjoints in this
manner (see, e.g., MFEM), and so the initial software infrastructure is already in
place. In addition to driving simulators in an agentic manner, there is also an op-
portunity to drive user facilities or autonomous “self-driving” labs that generate
and process multimodal data. Although multimodal learning is of massive inter-
est to industry, the breadth of modalities, in simulation (ranging from ab initio
density functional theory to exascale Earth system models), in experiments (from
tabletop X-ray measurements to massive user facilities), and into text (in the form
of technical reports and classified journals) dwarfs the more focused efforts likely
to be conducted by industry.
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Conclusion 4-2: DOE is uniquely positioned to shape the future of Al-
driven science. Material informatics and near-autonomous scientific
platforms highlight the power of combining curated experimental data,
simulation, and advanced Al to accelerate discovery. Federated comput-
ing and facility integration extend this vision by enabling distributed use
of DOE’s infrastructure.

The curation and integration of specialized knowledge coupled with emerg-
ing multimodal and agentic Al approaches underscore the importance of preserv-
ing expertise, reasoning across diverse scientific data streams, and directly linking
foundation models to DOE’s mature simulation ecosystem.

Recommendation 4-2: The Department of Energy should both mod-
ernize existing infrastructure and invest in new infrastructure to
generate, curate, and facilitate the large data corpus necessary to
build a scientific foundation model, including simulations to create
data, high-throughput and/or autonomous experimental facilities,
and facilities to host data. Additionally, they should create inter-
faces (e.g., agentic, retrieval-augmented generation tools) through
which large foundational models may easily access these sources.
A successful strategy will provide holistic access to multimodal or
heterogeneous infrastructure across the entire DOE complex, miti-
gating the “stove-piping” of assets between different laboratories
or departments.

TALENT RETENTION

The success of any DOE-wide foundation model initiative depends entirely
on attracting and retaining top Al talent. This presents significant challenges,
primarily due to intense competition from the private sector. Industry has rapidly
accelerated its Al hiring, evidenced by a 21 percent increase in Al-related job
postings from 2018 to 2023. Critically, employers are now prioritizing practical
skill-based hiring over formal degrees. With Al competencies commanding a 23
percent wage premium—a value surpassing that of degrees up to the doctoral
level (Bone et al. 2025)—and industry offering higher compensation and excep-
tional working conditions, DOE will need to compete for this essential expertise.

An added challenge that DOE faces arises from slow funding cycles that
make it difficult to keep up with the pace of innovation in industry. Traditional
DOE funding cycles, often spanning multiple years, can impede the rapid devel-
opment and deployment of Al technologies. In contrast, industry labs frequently
operate with more agile funding mechanisms, enabling quicker adaptation to
emerging Al advancements. Within the National Laboratories, laboratory-di-
rected research and development (LDRD)-based funding leads to a minimum
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1-year lag to starting a project, which could be slow to the point of missing a
major development completely. Furthermore, industry often has the resources to
allow teams to solely focus on a single large-scale project, often for long periods
on the order of years. To bridge this gap, DOE could consider implementing more
flexible funding models, such as rolling proposals or seed grants, to accelerate Al
research and development. DOE’s Office of Science maintains a number of large
multi-institutional initiatives that may provide a vehicle to adapt more flexibly,
for example, a Scientific Discovery Through Advanced Computing center, which
has a broad enough scope and a sufficiently long-time horizon to adapt to rapid
developments in the field while maintaining accountability to taxpayers.

To foster an environment conducive to Al innovation, DOE needs to cultivate
a research culture that emphasizes flexibility and speed. This includes adopting
performance metrics that prioritize real-world impacts, such as model robustness
and deployment success, over traditional academic outputs such as publications.
Encouraging interdisciplinary collaboration and providing recognition for contri-
butions to Al systems and infrastructure can further enhance DOE’s competitive-
ness in the Al research landscape.

Despite challenges, DOE possesses unique strengths that can be leveraged to
advance Al research and attract talent. DOE engages in mission-driven research;
DOE’s focus on societal challenges, such as clean energy and national security,
attracts scientists motivated by purpose-driven work. Further, in contrast to indus-
try, long-term career tracks within DOE foster sustained development of complex
Al systems integrated with physical models. Finally, collaborations between
physicists, chemists, computer scientists, and engineers enable the development
of Al models that require domain-aware reasoning.

DOE’s infrastructure and expertise provide a solid foundation for Al-driven
scientific discovery. Decades of investment in physics-based simulation codes
offer valuable assets that Al can learn from or emulate. Robust, scalable software
platforms developed by DOE laboratories can power hybrid workflows combin-
ing symbolic and neural reasoning. Scientific data sets from large-scale experi-
ments serve as high-value training and validation sources for domain-specific
Al. Furthermore, DOE’s supercomputers and user facilities provide superior
computing capabilities and experimental data for training foundation models and
deploying Al-augmented simulations.

A further issue is how DOE can best collaborate with universities. Building
a strong academic pipeline is crucial for long-term Al capability in DOE. Some
possible avenues for encouraging further collaboration with universities include:

* Embedding graduate students and postdocs in national labs with co-
mentorship from university faculty and lab researchers can strengthen the
Al talent pipeline.
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e Establishing joint DOE-university institutes focused on the intersec-
tion of Al and specific DOE mission areas can foster collaboration and
innovation.

* Supporting joint national laboratory and university centers, with poten-
tial industry support, that focus on Al and physical sciences can enhance
DOE’s research capabilities.

* Facilitating easier transitions for university Al experts collaborating with
DOE labs can promote knowledge exchange and innovation.

Conclusion 4-3: DOE struggles to compete with the private sector for
Al talent due to lower salaries and slow, traditional funding cycles.
However, DOE’s unique strengths, such as its mission-driven work,
long-term career paths, and powerful supercomputing infrastructure,
can be leveraged to attract talent. Building a strong academic pipeline
through closer collaboration with universities is also essential for its
long-term success.

Recommendation 4-3: To maintain a top-tier workforce, the De-
partment of Energy (DOE) should design leadership-scale scientific
research programs and provide staff with opportunities to rap-
idly adapt to a quickly evolving technological landscape. To attract
early-career scientists, DOE should be perceived as the best place
to become a leader in scientific machine learning; while industry
may lead large language model space, the unique access to state-
of-the-art science can attract top talent. To be competitive with
large-scale development efforts in industry, it is important to avoid
fracturing of scientists’ time and attention. We recommend that
DOE should create mechanisms by which medium through large
teams can mount coordinated, focused efforts targeting mission-
critical developments in fundamental research into, and applica-
tions of, foundation models for science.

UNIFIED DATA REPOSITORY

DOE provides several open-source data repositories that serve the research
community. These repositories are organized in a fragmented fashion across
DOE subdomains (Table 4-1), each hosting heterogeneous data formats and sizes
without a unified access interface. Many smaller data sets—often the output
of single-investigator LDRD projects—reside on external curation platforms,
further fragmenting access. Automated classifiers must inspect each data set for
export-control restrictions, adding another layer of procedural complexity. Col-
lected data sets typically represent final project outputs and omit intermediate
simulations, classified results, and the metadata and documentation generated
during data production.
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TABLE 4-1 Department of Energy (DOE) Open-Source Data Repositories

Name Description

Open Data Catalog Machine-readable list of all publicly available data sets
maintained by DOE and its program and staff offices (https://
www.energy.gov/data/articles/open-data-catalog).

DOE Data Explorer Portal for DOE-funded science and engineering data (https://
(OSTI/E-Link) www.osti.gov/dataexplorer).
Materials Data Facility Publication and discovery service for materials data (Blaiszik et

al. 2016; NETL 2024).

Earth System Grid Federation Archive of climate model output and observations
(Ananthakrishnan et al. 2007).

Joint Genome Institute Data ~ Genomic and metagenomic data sets for bioenergy research

Portal (https://data.jgi.doe.gov).

Open Energy Information Wiki and repository of energy, resource, and policy data (https://

(OpenEI) openei.org/wiki/Main_Page).

Wind Integration National High-resolution wind power meteorology and output data (Draxl1

Dataset Toolkit et al. 2015).

NREL Data Catalog Photovoltaic system performance data (https://openei.org/wiki/
PVDAQ).

NOTE: NETL = National Energy Technology Laboratory; NREL = National Renewable Energy
Laboratory.

DOE can address these challenges by establishing a centralized data center
on the scale of its flagship supercomputing facilities. Such a center would offer
extensive storage infrastructure, dedicated curation staff, and clear governance
policies to enforce a consistent application programming interface for data host-
ing and retrieval for multimodal scientific data sets. A centralized data center
could also help create interfaces not only to access data, but also to access
potential foundation models. The easy access to the foundation models could
be crucial for the scientific discovery cycle. It would also support research into
best practices for data curation and the development of software tools tailored to
ingesting large data sets into foundation models.

Conclusion 4-4: Although DOE curates many high-value data sets of
value for construction of foundation models, they are typically devel-
oped in an ad hoc manner with heterogeneous file formats and data
curation strategies that currently pose a barrier to high-throughput
processing of data. Foundation models present a unique opportunity to
address this issue.
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Recommendation 4-4: To increase the success of future foundation
models for science, the Department of Energy should invest in large-
scale data user facilities (classified and unclassified), leveraged by
artificial intelligence’s growing capability to interpret heterogeneous
scientific data, similar to the successes experienced with previous
investments in supercomputers, and open-source scientific comput-
ing libraries.
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Foundation Model Challenges

SOURCES OF CHALLENGES

Applying foundation models within the Department of Energy’s (DOE’s)
missions presents a multilayered set of technical and operational challenges.
These models, which emerged from success in domains such as natural language
processing and vision, struggle to transfer directly into DOE’s computational
science workflows that require physical consistency, mesh- or geometry-aware
representations, and scalable inference across high-dimensional, multiscale par-
tial differential equation systems (Pyzer-Knapp et al. 2025). DOE applications
such as reactor modeling, Earth systems prediction, and fusion simulation involve
high-dimensional, spatiotemporal fields with millions to trillions of values per in-
stance, placing extreme demands on memory, computational throughput, and ar-
chitectural efficiency. The absence of embedded physical constraints in standard
foundation model architectures, combined with stochastic training dynamics,
emergent capabilities, and nondeterministic behaviors, hinders scientific reli-
ability, complicates verification, and reduces confidence in high-stakes scenarios
(Babuska and Oden 2004). The core promise of foundation models, pretraining
across diverse tasks and modalities to enable broad generalization, is precisely
what introduces new risks in scientific domains where accuracy, stability, and
reproducibility are paramount (Palmer and Stevens 2019). Scientific foundation
models are expected to extrapolate across physical regimes, boundary conditions,
and domain geometries with minimal adaptation, yet this capability remains
largely aspirational in practice. Fine-tuning on downstream scientific problems
often proves computationally expensive, brittle, and sensitive to discretization
artifacts, with performance degrading when faced with domain shifts or mesh
changes (Radova et al. 2025). The lack of standardized data sets for DOE-rele-
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vant systems further hampers reproducibility, robust benchmarking, and model
transferability across simulation codes or physical domains. DOE use cases also
demand task interactivity and feedback integration, such as real-time control of
plasma confinement or anomaly detection in sensor networks. These agentic and
dynamic workflows are not typically reflected in the static pretraining distribu-
tions used to develop generalist foundation models, which are often drawn from
web-scale or simulation-agnostic corpora. Consequently, adapting pretrained
foundation models for DOE environments requires techniques such as domain-
specific simulation environments, reward-informed data-relabeling pipelines,
digital twin infrastructure, and architectural modifications that encode physical
priors or conservation laws (Yuan et al. 2025). Even in data-rich domains, the
absence of reward structures, labeled physics, or causal annotations limits the
ability to drive meaningful adaptation. In addition, the need to accommodate
heterogeneous data types, such as text, sensor streams, video, and mesh-based
simulations, introduces architectural challenges in designing foundation models
that can jointly align, fuse, and validate across disparate modalities while preserv-
ing spatiotemporal and physical coherence (Mukherjee et al. 2025).

Collaboration with industry introduces additional constraints. Proprietary
model weights, restricted data access, and closed-source infrastructure often
prevent rigorous verification, validation, and uncertainty quantification (VVUQ)
and reproducibility practices, especially when security, transparency, or audit-
ability are required.

Finally, the energy and computational costs of training and adapting large
foundation models, particularly across diverse scientific regimes, impose signifi-
cant burdens on DOE facilities (Koch et al. 2025). Addressing these challenges
will require coordinated investments in energy-efficient and sustainable foun-
dation model development, physically informed architectures, domain-specific
VVUQ methodologies, and infrastructure for transparent, traceable, and repro-
ducible deployment across DOE’s science and national security missions (Tera-
nishi et al. 2025).

Artificial Intelligence Assurance, Test, and Evaluation

Al assurance for foundation models refers to the evidence-based process of
demonstrating that a system is reproducible, auditable, and fit for purpose in DOE
mission settings. Assurance is tied to acceptance criteria declared in advance for
a specific task and operating regime, and results must be repeatable across soft-
ware environments and hardware platforms. It is not a single evaluation step but
a continuous life-cycle discipline spanning model conception, training, deploy-
ment, and requalification. This framing echoes emerging life-cycle models for
trustworthy Al (Afroogh et al. 2024) and conceptual roadmaps that advocate a
“never trust, always verify” paradigm for Al systems (Tidjon and Khomh 2022).

At the requirements stage, DOE programs should specify quantitative criteria
for accuracy, stability, and latency. Verification must enforce conformance with
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physical conservation, invariants, boundary, and unit consistency, and portabil-
ity across meshes and geometries using both synthetic and experimental data.
Validation extends beyond simulation comparison to include closed-loop testing
with controllers or optimizers in the loop, where stability margins, constraint-
violation rates, and worst-case performance are directly measured. Recent assur-
ance frameworks emphasize that validation should be tied to empirical conditions
of use, not only static benchmarks (Bloomfield and Rushby 2024).

Uncertainty quantification is decision linked: predictive coverage should
be calibrated against DOE-relevant distributions, and provenance must trace
uncertainty sources to modalities, training stages, and preprocessing steps. To
support this, foundation models must carry reproducibility dossiers documenting
data set lineage, hash-verified snapshots, training seeds, hardware and software
stacks, and code commits. Determinism budgets should quantify acceptable drift
across multinode and mixed-precision runs. This aligns with recent calls for
comprehensive trustworthiness assessment across robustness, transparency, and
accountability dimensions (Kowald et al. 2024).

Deployment in high-consequence settings such as fusion control or grid
operations requires staged test-beds. Models first undergo software-in-the-loop
trials with high-fidelity simulators, advance to hardware-in-the-loop testing on
the target control stack, and finally, operate in shadow mode with full telemetry
in the live environment. Full deployment proceeds only if predeclared accep-
tance criteria are satisfied in the simulator and hardware-in-the-loop stages; any
modification to data, model, controller, or operating envelope triggers mandatory
requalification. This staged life cycle reflects broader proposals for trustworthy
and safe Al architecture (Chen et al. 2024) and ensures that DOE’s mission ap-
plications meet safety and reliability requirements before operational use.

Operational safeguards must be integral to the assurance framework. These
include watchdogs and admission control for computing resources, fixed profile
execution bounds, and certified fallback controllers. Out-of-distribution detection
should be paired with safe degradation policies such as hold-last-good. Where
counterfactual reasoning is central, training should be coupled with interventional
simulators, and validation should include intervention suites and replay of histori-
cal logs. The importance of embedding such protections has been emphasized
in the broader Al governance literature (Blau et al. 2024) and in proposals for
architectural frameworks for Al safety (Chen et al. 2024).

By consolidating VVUQ, reproducibility, robustness testing, and staged
deployment into a unified life cycle, DOE can ensure that foundation models are
evaluated with the same rigor long applied to scientific codes.

Verification

Verification ensures that foundation models are implemented correctly and
yield outputs consistent with physical principles (Gurieva et al. 2022). For sci-
entific applications at DOE scale, this requires more than standard software test-
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ing. The size and complexity of modern foundation models, which often contain
billions of parameters and are applied to high-dimensional spatiotemporal fields,
demand modular verification strategies that address emergent behaviors, stochas-
tic dynamics, and numerical stability. This is especially critical for systems where
any violation of conservation laws or symmetry principles may have safety or
operational consequences.

Some DOE applications require inference that is not only accurate but also
predictable in timing and auditable in operation so that control and protection
functions consistently meet strict deadlines. For these settings, foundation model
pipelines must be engineered to satisfy fixed execution budgets, deliver deter-
ministic behavior under load, and fail safely when assumptions are violated.
A practical assurance profile includes predictable worst-case execution time
established through fixed-profile scheduling on the target platform, hardware-in-
the-loop staging before any field activation, and phased deployment that begins
in shadow mode with full telemetry before actuation authority is granted. Safety
must be ensured through conservative fallback controllers when timing bounds
or input validity checks are not met. Continuous audit trails should capture tim-
ing, inputs, intermediate states, and actions to ensure full traceability. Additional
safeguards include admission control for computing resources, watchdogs, and
out-of-distribution input tests that automatically trigger safe states. Acceptance
criteria must demonstrate that closed-loop stability and protection margins are
preserved across the specified disturbance set and operating envelope. Scientific
data sets further complicate the task. Inputs such as three-dimensional mesh-
based simulation fields often contain trillions of values, overwhelming conven-
tional memory and computing pipelines. Differences introduced by stochastic
initialization, hardware platforms, or software libraries can lead to inconsistent
model outputs, undermining reproducibility and making fault tracing difficult
(Barton et al. 2022). Most foundation model architectures, especially transformer-
based models, are trained on data sets with limited fidelity to physical systems,
simulation structure, or simulation-specific structure. As a result, it is difficult
to determine whether their predictions honor physical realism, particularly in
applications such as turbulent flow or magnetohydrodynamics. These issues are
compounded when industry partnerships restrict access to pretrained weights or
codebases, limiting transparency and reproducibility (Yang et al. 2020).

Sustainability is another key concern. Verification of large foundation models
across multiple scientific domains often involves retraining or revalidation, which
incur high energy and computational costs (Han et al. 2023). As model sizes
continue to grow, DOE evaluates energy-efficient alternatives and sustainability
metrics to ensure that foundation model verification remains viable at scale.

Addressing these challenges requires adopting modular model designs that
support isolated testing and interpretation of internal components. This approach
is already used in several scientific and engineering pipelines. In operator-learn-
ing architectures (Hossain et al. 2025; Kobayashi and Alam 2024; Kobayashi et
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al. 2025; Lu et al. 2021), the branch-trunk decomposition (e.g., multiple-input
operator nets) cleanly separates an encoder branch from a trunk coordinate
network, allowing the encoder to be frozen while the trunk is unit-tested on
synthetic or gold-standard fields. Neural operator methods with adapter layers
create plug-in modules that can be swapped or ablated while holding the core
operator architecture fixed (e.g., modular operator learning approaches such as
multioperator architecture; Zhang 2024). In hybrid modeling, learned subgrid
closures or surrogate modules are routinely inserted into traditional solvers (e.g.,
turbulence closures in fluid or atmospheric codes) so that the learned module can
be validated separately under canonical flow conditions before being integrated
into the full solver. (See survey of machine learning closure modeling in turbu-
lence; Beck and Kurz 2021.)

Retrieval-augmented pipelines also already evaluate retriever and predictor
modules separately, enabling stress tests of the knowledge interface. Mixture-of-
experts (MoE) and routing architectures expose per-expert behavior that can be
profiled with targeted inputs and compared against reference cases (e.g., recent
MoE gating models showing analyzable expert routing; Nabian and Choudhry
2025).

In practice, isolation is enforced using stable interfaces and test harnesses:
strict component contracts for inputs and outputs, synthetic data generators to
probe edge-case behavior, golden tests on curated benchmarks, and swap-in or
swap-out experiments that leave the surrounding system unchanged except for the
module under test. These patterns demonstrate that isolated testing and interpre-
tation are not only possible but already in use in modern scientific and machine
learning systems, and they can be extended to foundation models intended for
DOE mission-critical deployment.

Benchmarking across DOE high-performance computing (HPC) environ-
ments can reduce platform-induced variability, while federated test-beds enable
collaboration with industry partners without compromising sensitive intellectual
property. Verification efforts should be tightly integrated with comprehensive
uncertainty documentation, capturing both aleatory and epistemic components
to support robust deployment decisions. To ensure that foundation models are
viable for science and engineering, users must treat verification as a foundational
component of trust, aligned with sustainability and reproducibility objectives
(Mahmood et al. 2024).

Validation

Validation assesses whether foundation model outputs faithfully reflect real-
world behavior, particularly in mission-critical DOE applications such as reactor
dynamics, grid stability, and materials performance (Wong et al. 2023). This
requires systematic comparison of foundation model predictions against experi-
mental observations and high-fidelity simulations (Hsieh et al. 2021), ensuring
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alignment with physical laws and constraints, such as energy conservation, con-
tinuity, and thermodynamic consistency. For complex systems such as microreac-
tors, where safety margins are narrow and data availability is limited, validation
must account for data quality, physical plausibility, and generalizability.

High-quality, representative data sets are foundational to foundation model
validation. Yet DOE domains often contend with sparse, noisy, or biased data,
especially from heterogeneous physical systems such as renewable energy grids
or coupled fluid—structure systems. These challenges are compounded by a lack
of standardized benchmarks and by the diverse modalities and formats typical
of scientific simulations, including scalar, vector, and tensor fields. Furthermore,
the geometric dependence of DOE simulations introduces portability concerns,
as foundation models trained on one discretization may fail when applied to dif-
ferent meshes or boundary conditions (Brunton et al. 2016; Moscoso et al. 2020).

Validating large-scale, pretrained, multimodal foundation models also en-
tails a significant computational burden. Scientific problems in Earth systems,
fusion, or subsurface modeling require validation across spatiotemporal domains
and governing equations, often with high-dimensional input—output mappings.
Although foundation models are designed to generalize across tasks and scale
with data volume, verifying their consistency across multiple physical regimes
remains a formidable task (Selin et al. 2024).

To address these issues, DOE can leverage a layered validation strategy.
First, experimental cross-validation using real-world data from national user
facilities, such as the Advanced Test Reactor, the Advanced Photon Source, or
the National Renewable Energy Laboratory, anchors foundation model outputs to
physical reality. Second, physics-based benchmarks, such as Monte Carlo neutron
transport codes in ExaSMR or SCALE, serve as reference standards for evaluat-
ing foundation model fidelity. Where empirical data are sparse, synthetic data
sets from validated simulators can support surrogate validation, provided they
are curated with traceable metadata and grounded in domain-specific governing
equations. For time-critical systems such as fusion control or grid stabilization,
validation must also extend to closed-loop behaviors, ensuring stability and
performance under uncertainty (Prinn 2013). In turbulence and Earth systems
modeling, for example, learned subgrid closures have been validated first on ca-
nonical benchmark flows before being integrated into general circulation models,
demonstrating that modular surrogate validation is feasible in practice (Beck and
Kurz 2021; Hassanian et al. 2025). In nuclear engineering, Monte Carlo neutron
transport has long served as a reference standard against which lower-fidelity
or surrogate models are calibrated and tested (Leppinen et al. 2015). Similarly,
synthetic data from validated simulators are already widely used in fusion and
materials science to supplement scarce experimental observations, provided that
the synthetic sets carry documented provenance and are grounded in governing
equations (Kobayashi et al. 2025). Recent surrogate modeling studies further
reinforce this layered approach, including climate emulation with graph neural
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networks (Potter et al. 2024), coastal ocean circulation surrogates with physics-
based constraints (Xu et al. 2024), adaptive implicit neural representations for
high-fidelity scientific simulations (Li et al. 2025), and surrogate-based Bayes-
ian calibration frameworks for climate models (Holthuijzen et al. 2025). Mesh
portability challenges have been addressed using graph neural network surrogates
on unstructured grids (Shi et al. 2022), and DOE’s Oak Ridge National Labora-
tory has employed surrogate-based calibration of the E3SM atmosphere model
(Yarger et al. 2024). Physics-informed surrogate models have also been demon-
strated for groundwater transport forecasting (Meray et al. 2024), while diffusion-
based surrogates are emerging for regional climate and sea-ice simulations (Finn
et al. 2024). These precedents indicate that the layered validation strategy is not
speculative but reflects a growing body of practice across multiple domains.
Importantly, validation is not a binary pass/fail exercise. If a foundation
model is shown to be invalid for a given regime, it is not discarded wholesale;
instead, its use is confined to conditions where validation evidence is sufficient. In
DOE mission settings, this means restricting the model to advisory or exploratory
roles until retraining, fine-tuning, or hybridization with physics solvers restores
fidelity. Models may also be demoted to shadow-mode operation, where outputs
are logged but not acted upon until requalification criteria are met. This mirrors
the way traditional simulation codes undergo continuous VVUQ cycles rather
than one-time certification. Thus, the layered validation framework both builds
on prior evidence and provides structured pathways for handling failure, ensuring
that only models with verified domain fidelity are elevated to operational use.

Uncertainty Quantification

Uncertainty Quantification (UQ) is indispensable for the trustworthy use of
foundation models in DOE applications (Bilbrey et al. 2025). Unlike traditional
simulators with interpretable inputs and outputs, foundation models pretrained
on diverse tasks and modalities behave as black box approximators whose out-
puts are not explicitly governed by physical laws. This creates deep challenges
for UQ, as error sources can propagate across input types, scientific contexts,
or temporal regimes without clear attribution or traceability (Wang et al. 2023).
Validation cannot rely on predictive fit alone when DOE decisions depend on
counterfactuals and operator interventions. Foundation models must preserve
causal structure under changes in operating point, control actions, and boundary
conditions. Meeting this challenge requires integrating causal formalisms and
intervention-based testing into both training and validation. Practical approaches
include incorporating physics-based causal graphs or invariance penalties during
training, pairing learning with interventional simulators that generate policy-
relevant counterfactuals, and extending validation to intervention suites derived
from simulation campaigns and historical logs. Evidence of robustness should
include not just predictive accuracy but counterfactual fidelity, invariance under
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admissible interventions, and stability when the model is exercised in closed-loop
control settings. Recognizing causal and interventional robustness as a distinct
challenge ensures that DOE foundation models are capable of supporting decision
making in safety-critical and policy-relevant environments.

Pretrained foundation models used in DOE settings must often integrate
sparse, noisy, or out-of-distribution data to support scientific inference (Moro
et al. 2025). This introduces layered uncertainties: aleatory uncertainty from
inherent randomness, epistemic uncertainty from incomplete knowledge, and
structural uncertainty arising due to domain shift between pretraining and deploy-
ment (Moscoso et al. 2020). For example, a foundation model trained on geo-
physical sensor networks may fail to generalize to grid control scenarios if rare
but critical events are underrepresented. Without explicit UQ, narrow predictive
intervals may mask failure risks that compromise safety and mission assurance.
Multimodal foundation models compound this complexity. Architectures that
integrate text, telemetry, simulation output, and high-resolution spatiotemporal
fields confront alignment and calibration issues unique to each data type. Classi-
cal UQ techniques, which assume homogeneity of inputs and well-defined likeli-
hoods, are poorly suited to these heterogeneous scientific settings. Pretraining on
unlabeled corpora also introduces ambiguity about data provenance, fidelity, and
representativeness, weakening the basis for uncertainty estimation in downstream
DOE applications.

DOE applications demand not only accurate predictions but transparent
characterization of uncertainty across heterogeneous data sources. Foundation
models must therefore estimate and report uncertainty per modality before com-
posing it at the task level. Each input class, whether text, point sensors, images,
or simulation fields, requires its own calibrated noise model and uncertainty head,
with ensembles or Bayesian layers providing epistemic estimates of model un-
certainty. Out-of-distribution detection should operate at both the single-modality
and joint levels to flag inputs outside training distributions. Coverage guarantees
must be calibrated with conformal or likelihood-free methods on DOE-relevant
distributions to ensure reliability. Every prediction should carry a structured
uncertainty record that attributes contributions to specific modalities, training
stages, and preprocessing steps. Such provenance enables users, operators, and
regulators to understand not only the magnitude of uncertainty but its origin,
providing the transparency required for deployment in high-consequence DOE
missions. For DOE’s mission-critical use, uncertainty must not only be quanti-
fied but also interpretable to domain experts and regulators (NEA 2016). While
ensemble methods and Bayesian deep learning offer statistical tools, they do not
fully meet DOE’s high-dimensional and context-sensitive requirements (Fort et
al. 2020). In domains such as fusion energy or nuclear thermal hydraulics, UQ
must resolve sensitivity to mesh discretization, boundary geometry, and initial
condition variability (Wang et al. 2022). UQ must be integrated into foundation
model pipelines from the outset, rather than retrofitted postdeployment. Early
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inclusion allows recursive calibration, scenario-based testing, and adaptive trust
assessment as models are transferred across domains or facility environments.

For DOE’s mission-critical settings, predictive fit alone is insufficient. Deci-
sion support often requires counterfactual reasoning: how a system responds un-
der interventions such as operator actions, set-point changes, or equipment faults.
Foundation models must therefore be validated not just on observed data but on
their behavior under interventions and in closed-loop interaction with controllers.
Integrating causal robustness into DOE’s assurance framework requires physics-
informed causal graphs or invariance penalties during training, coupled with
interventional simulators that generate policy-relevant counterfactuals. Validation
should extend to structured intervention suites built from simulations and histori-
cal logs. Pairing uncertainty quantification with causal checks during pretraining
and fine-tuning enables early rejection of models that may replicate passively
observed data but collapse under perturbation. Evidence of robustness must
include counterfactual fidelity, invariance under admissible interventions, and
stability when embedded in control loops. Recognizing causal and interventional
robustness as a distinct challenge ensures that foundation models can support
DOE operators and regulators with trustworthy, decision-relevant behavior. This
alignment with validation and reproducibility workflows gives DOE decision
makers a reliable basis for quantifying and managing uncertainty in operational
systems (Rudin 2019), with test-beds such as DOE’s Nuclear Energy Advanced
Modeling and Simulation program (NEAMS n.d.) and Office of Cybersecurity,
Energy Security, and Emergency Response (DOE n.d.) offering structured plat-
forms for future foundation model-UQ integration).

Ultimately, general-purpose foundation models are not viable for deployment
in DOE’s regulatory and high-risk environments without multimodal, physics-
aware, and domain-transferable UQ mechanisms that match the complexity and
societal stakes of DOE science. Although foundation models offer compelling
new capabilities, DOE cannot assume that existing VVUQ practices for tradi-
tional simulation codes apply directly. At present, foundation models should
be pursued as research assets whose deployment in high-consequence settings
depends on the creation of assurance frameworks. This means that near-term use
is appropriate for exploratory science, surrogate modeling, and advisory applica-
tions, but operational roles in control, protection, or licensing should await the
development of DOE-specific VVUQ, reproducibility, and assurance standards.
Thus, the immediate recommendation is not to prohibit use but to invest in
dedicated research that adapts and extends VVUQ methods to the foundation
model context, establishing the evidence base required for safe and certifiable
deployment.

Conclusion 5-1: VVUQ methods analogous to those for traditional
computational modeling do not exist for, or map directly onto, founda-
tion models.
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REPRODUCIBILITY

Reproducibility is the ability to replicate results under consistent conditions,
a foundational requirement for scientific integrity and model trustworthiness. In
the context of foundation models, especially those pretrained across heteroge-
neous data modalities and designed for cross-task generalization, reproducibility
becomes significantly more complex. These models are often trained on mas-
sive, uncurated data sets, under evolving software environments and stochastic
training routines (Laine et al. 2021). Such variability introduces silent failure
modes that can undermine reliability in DOE’s high-stakes domains (Tian et al.
2018), where model outputs may influence nuclear safety evaluations, advanced
material qualification, or infrastructure resilience planning (Wang et al. 2025).
Unlike narrowly scoped machine learning models, foundation models function as
multipurpose, continuously evolving systems. Their ability to generalize across
modalities (e.g., text, simulation data, and sensor fields) and across tasks intro-
duces deeper reproducibility risks. The same model may be applied to subchannel
thermal-hydraulics in one instance and to geospatial risk mapping in another,
with minimal retraining. Without rigorous documentation of pretraining data sets,
transfer learning decisions, and model evolution, the provenance of any single
prediction becomes difficult to verify or audit. Moreover, generalist models often
operate with latent knowledge acquired during pretraining stages that are difficult
to retrace or validate (Pyzer-Knapp et al. 2025).

In DOE contexts, these concerns are not academic. Reproducibility is a
precondition for regulatory acceptance, operational deployment, and scientific
validation (Allison et al. 2018). Yet, three critical barriers persist. First, nonde-
terminism due to random weight initialization, floating-point discrepancies, and
hardware variability can yield different outputs for the same inputs, especially
when dealing with distributed training across heterogeneous platforms (Allison
et al. 2018). Second, data and code access are often restricted in national secu-
rity or proprietary collaborations, making external replication difficult. Third,
inconsistent training practices (e.g., undocumented hyperparameters, varying data
preprocessing pipelines, or ad hoc fine-tuning) introduce methodological drift
across teams and institutions (Nichols et al. 2021).

Addressing these challenges requires intentional infrastructure and cultural
shifts. Standardized computing environments, reproducible pipelines using fixed
seeds and version-controlled dependencies, and MLOps tooling for experiment
lineage must become baseline practices (Nature.com 2021). DOE is uniquely
positioned to lead here, leveraging its HPC systems and scientific workflow
infrastructure to enforce deterministic model training and versioned data sets.
Open science policies, where feasible, should promote model card documenta-
tion, training log archival, and reproducibility benchmarks. In secure settings,
controlled-access reproducibility testbeds can support internal verification with-
out exposing sensitive materials. Ultimately, the reproducibility of foundation
models in science depends on shared codebases, fixed sources of randomness,
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and acknowledging that foundation models are not static endpoints but evolving,
reusable artifacts (Nichols et al. 2021). Reproducibility must account for how a
model was trained on what data, for which task, and under which assumptions,
while enabling traceable, auditable reuse across new applications. This becomes
especially vital as DOE seeks to deploy general-purpose models across institu-
tions and missions, where latent variability may propagate unnoticed and com-
promise reliability at scale.

In DOE contexts, fit-for-purpose means that a foundation model can be dem-
onstrated to satisfy acceptance criteria that are explicitly matched to the safety,
security, and reliability demands of its intended use. For exploratory science and
low-risk applications, this may require only statistical fidelity, convergence under
refinement, and reproducibility of results across runs and platforms. For regula-
tory or mission-relevant applications, fit-for-purpose raises the bar: models must
provide deterministic behavior within specified tolerances, complete provenance
of data and training decisions, and calibrated uncertainty estimates with coverage
guarantees tied to DOE-relevant distributions. For real-time control or protection
functions, fit for purpose requires safety certification: predictable execution under
bounded latency and jitter, validated closed-loop stability margins, and robust
fallback or fail-safe behavior under disturbance.

Mapping VVUQ to these tiers ensures that DOE foundation models are not
treated as “one size fits all,” but are qualified according to the risks they man-
age. Tiered acceptance criteria might include (1) reproducibility benchmarks and
physics-based consistency checks for discovery science; (2) reproducibility dos-
siers, provenance logging, and validated uncertainty quantification for regulatory
use; and (3) hardware-in-the-loop timing guarantees, interventional validation
suites, and documented fail-safe policies for mission-critical control. By embed-
ding these criteria, fit for purpose becomes an operational standard rather than a
rhetorical goal, aligning model trustworthiness with the concrete safety, security,
and reliability needs of DOE missions.

Conclusion 5-2: VVUQ, interpretability, and reproducibility are critical
for establishing and maintaining trust in systems that are inherently
complex, opaque, and increasingly deployed in high-stakes situations.
Integration of VVUQ into foundation models would lead to increasing
their trustworthiness, reliability, and fit for purpose, which is essential
for future scientific discovery and innovation.

Recommendation 5-1: The Department of Energy (DOE) should
lead the development of verification, validation, and uncertainty
quantification frameworks tailored to foundation models, with built-
in support for physical consistency, structured uncertainty quanti-
fication, and reproducible benchmarking in DOE-relevant settings.
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Conclusion 5-3: Al for science will demand more and different physical
experiments to validate the veracity of the Al predictions. Empirical
grounding ensures that foundation model outputs reflect physical laws
and domain-specific behavior. This is especially critical in high-stake
DOE applications, where simulations alone cannot guarantee correct-
ness, and where physical experiments provide the only definitive test of
predictive validity.

Recommendation 5-2: In line with Recommendation 4-2, the De-
partment of Energy should place high priority on data collection
efforts to support reproducible foundation model training and vali-
dation, analogous to traditional efforts in verification, validation,
and uncertainty quantification.

Recommendation 5-3: The Department of Energy should estab-
lish and enforce standardized protocols and develop benchmarks
for training, documenting, and reproducing foundation models for
science and should participate in defining software standards, ad-
dressing randomness, hardware variability, and data access across
its laboratories and high-performance computing infrastructure.

CHALLENGES OF INDUSTRIAL COLLABORATION

There are both benefits and risks when collaborating with Al industry lead-
ers. It would benefit DOE to be aware of such benefits and the challenges that
collaboration might bring.

* Benefits and risks: Industrial partnerships provide DOE with access to
advanced computational platforms, specialized foundation model ex-
pertise, and scalable software pipelines, accelerating the development
and deployment of foundation models. A notable example is the Pacific
Northwest National Laboratory (PNNL)-Microsoft collaboration, which
leveraged Al and HPC to identify a solid-state electrolyte that reduced
lithium usage significantly (ScienceAdviser 2024). This collaboration ex-
emplifies the potential of combining domain science with state-of-the-art
industrial infrastructure. However, such partnerships introduce risks, in-
cluding restricted access to training data and model weights, proprietary
architectures, and diverging priorities, as industry tends to emphasize
market-driven goals. DOE, by contrast, upholds a public science and
national security mission.

* Proprietary technology and data sharing: Proprietary models and data
sets can inhibit VVUQ and reproducibility (Bail 2024). DOE projects
involving classified or legacy data face additional barriers in adopting or
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modifying commercial foundation models. Licensing terms, intellectual
property concerns, and export controls necessitate structured agreements.
Techniques such as federated learning or secure APIs can mitigate expo-
sure risks but introduce technical and coordination burdens. The PNNL—
Microsoft case illustrates the need for structured interfaces that advance
science without compromising data integrity or transparency.

* Balancing commercial and domain-specific models: The trade-off be-
tween using commercial foundation models (e.g., GPT-5) and developing
domain-specific models tailored to DOE needs is not trivial. Commercial
models are often multimodal and efficient but may underperform in ac-
curacy-critical settings such as reactor kinetics or plasma control (Sarker
2022). By contrast, domain-specific models align better with physical
constraints but require significant DOE investment in data curation,
model training, and infrastructure. Hybrid strategies such as fine-tuning
open-source backbones, incorporating retrieval-based augmentation, or
adopting tiered licensing can help DOE benefit from commercial models
while retaining control over mission-sensitive functionality. Recent stud-
ies show that commercial foundation models can provide valuable starting
points for DOE use when carefully adapted. For example, large language
models pretrained on general corpora have been successfully fine-tuned
for domain science tasks such as materials property prediction, protein
folding, and scientific code generation. In Earth sciences, general vision—
language models have been adapted to remote sensing and climate data
through retrieval-augmented pipelines, significantly reducing the cost of
training from scratch. Hybrid strategies that combine open-weight com-
mercial backbones with DOE-curated data have already demonstrated
improved sample efficiency and reduced infrastructure costs compared
to fully bespoke models. These precedents indicate that DOE can benefit
from commercial models not by adopting them wholesale, but by treat-
ing them as adaptable baselines that lower entry costs and accelerate
deployment while preserving pathways for domain-specific fine-tuning
and assurance.

* Computational and data infrastructure: Cloud-based industrial infrastruc-
ture enables scalable model training and inference but raises concerns
regarding sustained access, reproducibility, and dependence on vendor-
controlled platforms (Talirz et al. 2020). DOE workflows often rely on
legacy simulation pipelines and experimental tools, raising interoperabil-
ity challenges when coupled with commercial Al ecosystems. Data cura-
tion remains a core barrier, especially for multimodal pipelines combining
sensor data, structured simulations, and annotated experimental data sets.
The energy intensity of foundation model operations also demands green
computing strategies and life cycle—aware efficiency metrics.
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* FEthical considerations: Partnerships must be structured to uphold ethical in-
tegrity. Commercial foundation models may reflect biases from pretraining
corpora or behave unpredictably in edge-case scientific scenarios (Blau et
al. 2024). For DOE, safeguarding sensitive data, ensuring equitable outputs,
and protecting scientific independence are paramount. Governance mecha-
nisms should enforce bias auditing, usage transparency, and responsible
development aligned with DOE’s public mission.

ETHICS, SAFETY, AND GOVERNANCE

The following measures frame responsible use and deployment alongside
validation, verification, and uncertainty quantification.

* Dual use and misuse: Foundation models designed for DOE science may
be repurposed in unintended ways, including adversarial cyber operations,
weaponization of scientific knowledge, or unauthorized manipulation of
critical infrastructure. The dual-use dilemma is acute when models trained
on sensitive nuclear, grid, or materials data are shared without safe-
guards. Addressing this challenge requires clear DOE policies on access
control, responsible licensing, and the use of model cards that specify
intended scope and restrictions. Technical safeguards should include
purpose-binding at the workflow or application programming interface
level, filters that block disallowed prompts or inference chains, and ap-
proval gates for sensitive features. Usage must be logged with auditable
traces and rate limits, while misuse red-teaming and rollback procedures
are incorporated into routine evaluation cycles.

* FEquity and bias in scientific data: Training data drawn from scientific
facilities, simulations, or environmental sensors may contain geographic,
demographic, or institutional biases that propagate into downstream analy-
ses. For instance, models trained primarily on data from well-instrumented
regions may underperform in underserved or developing contexts, reinforc-
ing inequities. To mitigate these risks, DOE foundation model pipelines
should embed bias-aware curation practices such as stratified sampling,
augmentation of underrepresented regimes, and per-modality calibration.
Coverage maps can identify blind spots, while model cards disclose data
composition, known biases, and intended scope so that downstream users
avoid unsupported applications.

* Safety of autonomous lab actions: Foundation models integrated into
experimental workflows, robotics, or closed-loop laboratories introduce
new safety hazards. Mis-specified objectives, misinterpreted sensor in-
puts, or adversarial perturbations could lead to unsafe behavior in labo-
ratories handling hazardous materials or operating advanced reactors.
Assurance mechanisms must include explicit interlocks, real-time human
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supervision, and shadow-mode testing before any autonomous authority
is granted. Embedding these safeguards ensures that DOE facilities can
benefit from automation while avoiding catastrophic failures driven by
misaligned model behavior.

* Provenance and accountability: Provenance is critical for ensuring that
predictions, recommendations, or control actions can be traced back
through pretraining data, fine-tuning procedures, and deployment environ-
ments. Without auditable lineage, regulators and operators cannot verify
whether outputs meet DOE’s trust and safety thresholds. Meeting this
challenge requires reproducibility dossiers and audit trails that capture
versioned data sets, training seeds, software environments, and interven-
tion histories. Hardware and environment profiles should be logged, with
signatures or attestations verifying workflow identity. This infrastructure
enables reproducibility reviews, external audits, and proper attribution
across institutions.

* Energy and sustainability accounting: Training and retraining large-scale
foundation models consume significant energy, sometimes on the scale of
DOE’s HPC facilities. Sustainability must therefore become a first-class
dimension of assurance. DOE should require reporting of energy per
training run and per inference, prioritize compact adapters and retrieval
methods over full retraining when possible, and schedule large jobs to
align with cleaner energy windows where feasible. Hardware selection
should emphasize meeting latency requirements at the lowest practical
power cost. By embedding sustainability metrics into VVUQ frameworks,
DOE can ensure that Al deployment advances a reliable, affordable, and
clean energy future in line with its mission.

Conclusion 5-4: Partnering of DOE laboratories with industry on Al
Sfoundation models will require deliberate effort, including flexible
contracting mechanisms, clear intellectual property agreements, data-
sharing processes, aligning on VVUQ approaches, responsible Al prac-
tices, and a shared understanding of respective missions, objectives,
and constraints.

Recommendation 5-4: The Department of Energy should deliber-
ately pursue partnerships with industry and academia to address
national mission goals, governed by flexible contracts, responsible
artificial intelligence standards, and alignment on reproducibility,
verification, validation, and uncertainty quantification approaches
and data sharing.
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A

Statement of Task

A National Academies of Sciences, Engineering, and Medicine consensus
study will assess the state of the art in foundation models and their use across
science research domains relevant to the Department of Energy mission. The
study will address the following questions:

*  What are some exemplar use cases where foundation models could impact
scientific discovery and innovation?

* How can foundation models be used in conjunction with traditional mod-
eling, computational, and data science approaches?

* How can challenges such as verification, validation, uncertainty quan-
tification, and reproducibility best be addressed to advance trustworthy
foundation models?

* What are priority research areas for investments to advance the develop-
ment and use of foundation models in scientific applications? What are
the trade-offs in investing in foundation models versus other mathematical
and computational approaches?
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Public Meeting Agendas

February 11, 2025 [4 pm—6 pm ET]
VIRTUAL OPEN SESSION

[4 pm] Welcome and Introductions
e Dona Crawford, Committee Chair

[4:10 pm]  Introduction from Department of Energy (DOE) Advanced
Scientific Computing Research (ASCR)
e Hal Finkel, Director Computational Science Research
and Partnerships Division, ASCR
e Steven Lee, Program Manager for Applied Mathematics
and Al

[4:50 pm]  Introduction from DOE National Nuclear Security
Administration
e Si Hammond, Federal Program Manager
e Thuc Hoang, Deputy Assistant Deputy Administrator for
Advanced Simulation and Computing

[5:30 pm]  Questions from the Committee
e Dona Crawford, Committee Chair

[6 pm] Committee Closed Session
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e Committee Reactions

March 6, 2025 [9 am—5 pm PT]
Location: Board Room, Beckman Center, 100 Academy Wy, Irvine, CA
92617

HYBRID OPEN SESSION

[9 am] Welcome and Introductions
e Dona Crawford, Committee Chair

[9:20 am]  Industry Perspective
20-minute presentation from each speaker with 35-minute
Q&A for the group
Petros Koumoutsakos, Moderator
e Vivek Natarajan, Google DeepMind
e Sebastian Nowozin, Google DeepMind
Panel Q&A, moderated by Petros Koumoutsakos

[10:35 am] Break

[10:50 am] DOE National Lab Panel 1
20-minute presentation from each speaker with 30-minute
Q&A for the group
Syed Bahauddin Alam, Moderator
e Earl Lawrence, Los Alamos National Laboratory
e Michael Mahoney, Lawrence Berkeley National
Laboratory
e Chris Ritter, Idaho National Laboratory
Panel Q&A, moderated by Syed Bahauddin Alam

[12:20 pm] Lunch

[1:20 pm] DOE National Lab 2
20-minute presentation from each speaker with 40-minute
Q&A for the group
Dan Meiron, Moderator
e Hendrik Hamann, Brookhaven National Laboratory
* Rick Stevens, Argonne National Laboratory
e  Georgia Tourassi, Oak Ridge National Laboratory
Panel Q&A, moderated by Dan Meiron

[3:00 pm]  Break
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[3:20 pm]  Applications and Foundation Model Users Panel 1
20-minute presentation from each speaker with 40-minute
Q&A for the group
Krishna Garikipati, Moderator
e Rémi Lam, Google DeepMind
e James Warren, National Institute of Standards and
Technology
e Bin Yu, University of California, Berkeley
Panel Q&A, moderated by Krishna Garikipati

[5:00 pm]  Open Session Adjourn

March 7, 2025 [9 am-3 pm PT]
Location: Board Room, Beckman Center, 100 Academy Way, Irvine, CA
92617

HYBRID OPEN SESSION

[9 am] Welcome Back and Introductions
e Dona Crawford, Committee Chair

[9:20 am]  Applications and Foundation Model Users Panel 2
20-minute presentation from each speaker with 35-minute
Q&A for the group
Marta D’Elia, Moderator
e William Collins, Lawrence Berkeley National Laboratory
*  Ann Speed, Sandia National Laboratories
Panel Q&A, moderated by Marta D’Elia

[10:35 am] Break

[10:50 am] DOE National Lab Panel 3
20-minute presentation from each speaker with 30-minute
Q&A for the group
Brian Kulis, Moderator
¢ Kevin Dixon, Sandia National Laboratories
e Kelly Rose, National Energy Technology Laboratory
e Brian Spears, Lawrence Livermore National Laboratory
Panel Q&A moderated by Brian Kulis

[12:20 pm] Lunch—Open Session Adjourns

[1:20 pm]  Closed Committee Session
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May 6, 2025 [1 pm-3 pm ET]
VIRTUAL OPEN SESSION

[1 pm] Welcome and Introductions
*  Dona Crawford, Committee Chair

[1:15 pm]  Foundation Model Presentation
*  Omar Ghattas, University of Texas at Austin

[1:45 pm] Committee Closed Session—Open Meeting Adjourns
[3:00 pm]  Closed Meeting Adjourns

May 20, 2025 [4 pm—6 pm ET]
VIRTUAL OPEN SESSION

[4 pm] Welcome and Introductions
*  Dona Crawford, Committee Chair

[4:15 pm] Foundation Model Presentation
e  Tzanio Kolev, Lawrence Livermore National Laboratory

[4:45 pm] Committee Closed Session—Open Meeting Adjourns

[6:00 pm]  Closed Meeting Adjourn
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Acronyms and Abbreviations

Al artificial intelligence

AM advanced manufacturing

ASCR Advanced Scientific Computing Research
DOE Department of Energy

ECP Exascale Computing Project

FFRDC  federally funded research and development center

FNO Fourier neural operator

GPT generative pretrained transformer

HPC high-performance computing

LDRD laboratory-directed research and development
LLM large language model

LLNL Lawrence Livermore National Laboratory
MoE mixture-of-experts

NNSA National Nuclear Security Administration
NREL National Renewable Energy Laboratory

PDE partial differential equations
PNNL Pacific Northwest National Laboratory
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RAG retrieval-augmented generation

SSP U.S. Stockpile Stewardship Program

vvuQ verification, validation, and uncertainty qualification
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Committee Member
Biographical Information

DONA L. CRAWFORD, Chair, retired as associate director for computation
from the Lawrence Livermore National Laboratory (LLNL), where she led the
laboratory’s high-performance computing efforts. In that capacity, Crawford was
responsible for the development and deployment of an integrated computing
environment for petascale simulations of complex physical phenomena. Prior
to her LLNL appointment in 2001, Crawford was with Sandia National Labo-
ratories since 1976 serving on many leadership projects including the Acceler-
ated Strategic Computing Initiative and the Nuclear Weapons Strategic Business
Unit. Crawford serves on the National Academies of Sciences, Engineering,
and Medicine’s Laboratory Assessments Board and has previously served on
several National Academies’ committees including the Committee to Evaluate
Post-Exascale Computing for the National Nuclear Security Administration, the
Committee to Review Governance Reform in the National Nuclear Security Ad-
ministration, and the Committee to Evaluate the National Science Foundation’s
Vertically Integrated Grants for Research and Education Program. She received
her MS in operations research from Stanford University.

SYED BAHAUDDIN ALAM is an assistant professor of nuclear, plasma, and
radiological engineering at the University of Illinois Urbana-Champaign (UIUC),
where he leads the MARTIANS (Machine Learning & ARTificial Intelligence for
Advancing Nuclear Systems) Laboratory. He was named as the national artifi-
cial intelligence (Al) leader in the UIUC’s official response to the White House
Al Action Plan (2025). He holds a joint appointment at the National Center
for Supercomputing Applications. Alam’s research expertise centers on energy-
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efficient Al and digital twins, with a primary focus on developing real-time Al
algorithms for nuclear and energy systems. He has been recognized with numer-
ous prestigious awards, including the Nuclear News 40 Under 40, Dean’s Award
for Excellence in Research from the UIUC Grainger College of Engineering,
Illinois Innovation Award finalist for excellence in cutting-edge innovation, a
“Top of Minds” feature by UIUC Grainger College, the Cambridge Philosophical
Society Award, the American Nuclear Society Best Paper Award, the Cambridge
Trust Award, and an Outstanding Teaching Award. He earned his PhD (2018) and
MPhil (2013) in nuclear engineering from the University of Cambridge and BSc
(2011) in electrical and electronic engineering from the Bangladesh University
of Engineering and Technology.

MARTA D’ELIA is the director of Al and ModSim at Atomic Machines and
an adjunct professor at the Stanford University Institute for Computational &
Mathematical Engineering. She previously worked at Pasteur Labs, Meta, and
Sandia National Laboratories as a principal scientist and tech lead. She holds a
PhD in applied mathematics and master’s and bachelor’s degrees in mathematical
engineering. Her work deals with design and analysis of machine learning (ML)
models and optimal design and control for complex industrial applications. She
is an expert in nonlocal modeling and simulation, optimal control, and scientific
ML. She is an associate editor of Society and Industrial and Applied Mathematics
(STAM) and Nature journals, a member of the SIAM industry committee, the vice
chair of the SIAM Northern California section, and a member of the NVIDIA
advisory board for scientific ML.

KRISHNA GARIKIPATTI obtained his PhD at Stanford University in 1996, and
after a few years of postdoctoral work, he joined the University of Michigan
in 2000, rising to professor in the Departments of Mechanical Engineering and
Mathematics. Between 2016 and 2022, he served as the director of the Michigan
Institute for Computational Discovery & Engineering. In January 2024 he moved
to the Department of Aerospace and Mechanical Engineering at the University of
Southern California. His research is in computational science, with applications
drawn from biophysics, materials physics, mechanics, and mathematical biol-
ogy. Of recent interest are data-driven approaches to computational science. He
has been awarded the Department of Energy Early Career Award for Scientists
and Engineers, the Presidential Early Career Award for Scientists and Engineers,
and a Humboldt Research Fellowship. He is a fellow of the U.S. Association for
Computational Mechanics, the International Association for Computational Me-
chanics, and the Society of Engineering Science; a Life Member of Clare Hall at
the University of Cambridge; and a visiting scholar in computational biology at
the Flatiron Institute of the Simons Foundation.
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SHIRLEY HO is a senior research scientist at the Center for Computational
Astrophysics at the Simons Foundation. She joined the Foundation in 2018 to
lead the Cosmology X Data Science group. Her research interests range from
cosmology to developing new ML methods for scientific data that leverage shared
concepts across scientific domains. Ho has extensive expertise in astrophysical
theory, observation, and data science. She focuses on novel statistical and ML
tools to address cosmic mysteries such as the origins and fate of the universe.
Ho analyzes data from surveys by the Atacama Cosmology Telescope, the Euclid
Observatory, the Large Synoptic Survey Telescope, the Simons Observatory, the
Sloan Digital Sky Survey, and the Roman Space Telescope, among others, to
understand our universe’s evolution. She earned her PhD in astrophysical sci-
ences from Princeton University in 2008 and BS degrees in computer science
and physics from University of California, Berkeley, in 2004. Ho was previously
a Chamberlain and Seaborg Fellow at Lawrence Berkeley National Laboratory
(LBNL). She joined Carnegie Mellon University as an assistant professor in 2011,
becoming the Cooper Siegel Career Development Chair Professor and a tenured
associate professor. In 2016 she moved to LBNL as a senior scientist.

SCOTT H. HOLAN is a Curators’ Distinguished Professor and the department
chair in the Department of Statistics and Data Science at the University of Mis-
souri and serves as a senior research fellow in the Research and Methodology
Directorate at the U.S. Census Bureau. His research expertise includes develop-
ing statistical and ML methodology for dependent data (spatial, spatiotemporal,
functional, and multivariate, among others), Bayesian methods, environmental
and ecological statistics, official statistics, and survey methodology. He is an
elected Fellow of the American Statistical Association (2014), an elected member
of the International Statistical Institute (2017), an elected Fellow of the Institute
of Mathematical Statistics (2021), and an elected Fellow of the American Asso-
ciation for the Advancement of Science (2024). Holan was a previous co-awardee
of the Statistical Partnerships Among Academe, Industry, and Government Award
(2017).

MICHEAL KEARNS is a professor and the National Center chair of the Depart-
ment of Computer and Information Science at the University of Pennsylvania
and the founding director of the Warren Center for Network and Data Sciences.
His research interests include topics in ML, Al, algorithmic game theory and
microeconomics, computational social science, and quantitative finance and al-
gorithmic trading. Kearns often examines problems in these areas using methods
and models from theoretical computer science and related disciplines. He also
often participates in empirical and experimental projects, including applications
of ML to problems in algorithmic trading and quantitative finance, and human-
subject experiments on strategic and economic interaction in social networks.

PREPUBLICATION COPY —Subject to Further Editorial Correction

Copyright National Academy of Sciences. All rights reserved.


https://nap.nationalacademies.org/catalog/29212?s=z1120

Foundation Models for Scientific Discovery and Innovation: Opportunities Across the Department of Energy ...

APPENDIX D 81

Kearns spent 1991-2001 in ML and Al research at AT&T Bell Labs and in the
last 4 years of his appointment was head of the Al department, which conducted
a broad range of systems and foundational AI work. Kearns received his under-
graduate degrees from the University of California, Berkeley, in mathematics and
computer science and his PhD in computer science from Harvard University. In
2020, Kearns joined Amazon Web Services as an Amazon Scholar, focusing on
fairness, privacy, and other “responsible AI” topics.

PETROS KOUMOUTSAKOS is the Herbert S. Winokur Jr. Professor for Com-
puting in Science and Engineering. He also currently holds a visiting researcher
position at Google DeepMind in London. He studied Naval Architecture (diploma
from the National Technical University of Athens, MEng from the University of
Michigan, and received a PhD in aeronautics and applied mathematics from the
California Institute of Technology [Caltech]). He has conducted postdoctoral
studies at the Center for Parallel Computing at Caltech and at the Center for Tur-
bulent Research at Stanford University and NASA Ames. He has served as the
chair of computational science at ETHZurich (1997-2020). Koumoutsakos is an
elected Fellow of the American Society of Mechanical Engineers, the American
Physical Society, and the Society of Industrial and Applied Mathematics. He
is a recipient of the Advanced Investigator Award from the European Research
Council and the Association for Computing Machinery’s Gordon Bell prize in
supercomputing. He is an elected International Member of the National Academy
of Engineering.

BRIAN KULIS is an associate professor at Boston University, with appointments
in the Department of Electrical and Computer Engineering, the Department of
Computer Science, the Faculty of Computing and Data Sciences, and the Division
of Systems Engineering. From 2019 to 2023, he was also an Amazon Scholar,
working with the Alexa team. Previously, he was the Peter J. Levine Career De-
velopment Assistant Professor at Boston University. Before joining Boston Uni-
versity, he was an assistant professor in computer science and in statistics at Ohio
State University. Prior to that he was a postdoctoral fellow at the University of
California, Berkeley, Electrical Engineering & Computer Sciences. His research
focuses on ML, statistics, computer vision, and large-scale optimization. He ob-
tained his PhD in computer science from the University of Texas in 2008 and his
BA from Cornell University in computer science and mathematics in 2003. For
his research, he has won three best paper awards at top-tier conferences—two at
the International Conference on Machine Learning (2005 and 2007) and one at
the IEEE Conference on Computer Vision and Pattern Recognition (2008). He
was also the recipient of a National Science Foundation (NSF) CAREER Award
in 2015.
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DANIEL I. MEIRON is currently a professor of aerospace and applied and com-
putational mathematics. His research interests are primarily in computational
fluid dynamics with connections to high-performance computing. He also has
interests in computational materials science. He received an ScD in applied
mathematics at the Massachusetts Institute of Technology working under Steven
A. Orszag. He has participated as part of a recent National Academies’ study on
exascale computing.

NATHANIEL TRASK recently joined the Department of Mechanical Engineer-
ing and Applied Mechanics at the University of Pennsylvania after spending 8
years as technical staff at Sandia National Laboratories. His research focuses on
developing foundational aspects of scientific machine learning (SciML) for high-
consequence engineering settings. By integrating concepts from modern physics
and probability into the design of deep learning architectures, he leads a research
program employing SciML for scientific discovery as well as to construct digital
twins of complex systems. He is the deputy director of the Scalable, Efficient
and Accelerated Causal Reasoning Operators, Graphs and Spikes for Earth and
Embedded Systems Center, an Office of Science funded multi-institutional center
developing next-generation Al architectures for Earth and embedded systems.
He has received the Department of Energy Early Career Award, as well as the
NSF Mathematical Science Postdoctoral Fellowship. His doctoral training was
in applied mathematics, with a focus on developing novel optimization-based
discretizations of partial differential equations to simulate multiphysics and mul-
tiscale problems. After moving to Sandia National Laboratories for a fellowship,
he went on to work extensively on ML applied to material science and physics
in extreme environments.
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