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Abstract
Environmental stress is increasing worldwide, yet we lack a clear picture of how stress disrupts the stability of microbial
communities and the ecosystem services they provide. Here, we present the first evidence that naturally-occurring
microbiomes display network properties characteristic of unstable communities when under persistent stress. By assessing
changes in diversity and structure of soil microbiomes along 40 replicate stress gradients (elevation/water availability
gradients) in the Florida scrub ecosystem, we show that: (1) prokaryotic and fungal diversity decline in high stress, and (2)
two network properties of stable microbial communities—modularity and negative:positive cohesion—have a clear negative
relationship with environmental stress, explaining 51–78% of their variation. Interestingly, pathogenic taxa/functional guilds
decreased in relative abundance along the stress gradient, while oligotrophs and mutualists increased, suggesting that the
shift in negative:positive cohesion could result from decreasing negative:positive biotic interactions consistent with the
predictions of the Stress Gradient Hypothesis. Given the crucial role microbiomes play in ecosystem functions, our results
suggest that, by limiting the compartmentalization of microbial associations and creating communities dominated by positive
associations, increasing stress in the Anthropocene could destabilize microbiomes and undermine their ecosystem services.

Introduction

Microbial communities play critical roles in ecosystem
functioning (e.g., nitrogen and carbon cycling) and in the
persistence and health of many plant and animal species
important to restoration, management, and agronomy [1–3].
However, as human activity in the Anthropocene continues
to disrupt natural environments and microbial processes
through increased environmental stress (e.g., higher

temperatures [4]), there remains an urgent need to under-
stand the factors that undergird microbiome stability in
order to mitigate potential changes to ecosystem services.
Previous work has shown that stress affects microbiome
composition [5–8], microbe–microbe interactions [9, 10],
and microbe–host interactions [11, 12]. However, the link
between environmental stress and the stability of these
microbial systems is less clear.

One promising avenue for understanding how stress
affects microbial community stability is network analysis.
When applied to ecology, networks are mathematical
representations of communities in which nodes represent
individual taxa and edges represent observed correlations in
abundances among taxa from which interactions may be
inferred [13, 14]. Network properties (e.g., modularity,
sparsity, etc.) have been used to successfully predict the
stability of networks of macroorganisms such as plant-
pollinator networks [15] and food webs [16], and have
recently been applied to microbiomes [6, 17]. In particular,
communities with certain network characteristics—greater
modularity, reduced positive associations among taxa, and
greater negative associations among taxa—are more stable,
meaning these communities: (1) have more limited shifts in
composition in response to environmental perturbations
and/or (2) are more likely to return to their equilibrium
composition after a perturbation [17–19].
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The first of these properties, modularity, quantifies how
strongly taxa are compartmentalized into groups of inter-
acting/co-occurring taxa (i.e., a module). Modularity can
reflect biological processes such as shared ecological
functions among taxa in a module [20–22], spatial com-
partmentalization [23], or similar habitat preferences
[24, 25], and can impact community stability. For instance,
high modularity in food webs stabilizes communities by
restricting the impact of losing a taxon to its own module,
thereby preventing the effects of that taxon’s extinction
from propagating to affect the rest of the network [16].

The second property that can predict stability in co-
occurrence networks is the ratio of negative to positive
associations between taxa. Positive relationships represent
high niche overlap and/or positive interactions between
taxa, while negative relationships indicate divergent niches
and/or negative interactions. The relative fraction of nega-
tive:positive associations can impact community stability
[17, 18, 26, 27]. For example, positive interactions can
destabilize microbial communities by creating positive
feedback loops between taxa supporting each others’ fit-
ness; thus, when one member in the positive feedback loop
decreases in abundance it will negatively impact the fitness
of other taxa reliant on the feedback loop’s services [18].

Here, we combine network theory and high throughput
sequencing across 270 soil microbial communities from 40
replicate stress gradients to provide the first investigation of
how the stability of microbial networks changes with stress.
To do this, we characterized soil microbial communities
from the Florida scrub, an ecosystem whose topography
generates a series of naturally replicated stress gradients of
decreasing nutrient and water availability [11, 28] within
just a few square kilometers of area and a few meters of
elevation gain [29]. We then assessed prokaryotic and
fungal community properties and network structure across
these replicate stress gradients to: (1) relate environmental
stress and microbial diversity and (2) relate environmental
stress and network stability using modularity and network
cohesion (i.e., the strength and number of positive and
negative associations). To gain insight into whether changes
in network properties could be attributed to changes in
species interactions, we (3) examined how the abundance of
facilitative, stress tolerant, and pathogenic taxa change
along the stress gradient.

Methods

Study system and field soil surveys

We conducted this study at Archbold Biological Station
(27°11′ N, 81°21′ W) in the imperiled and endemic Florida
Scrub (~15% remaining). This ecosystem, one of the oldest

in Florida, is located along the Lake Wales Ridge in central
Florida (Fig. 1). We focused on soil microbiomes from
three scrub habitats (flatwoods, scrubby flatwoods, and
rosemary scrub) that occur at increasing elevation relative
to the water table (Supplementary Fig. 1; F2,132= 35.45,
P < 0.0001), and experience corresponding decreases in soil
moisture [30] resulting in increasing stress [29, 31, 32]. The
stress gradient associated with elevation is a strong deter-
minant of plant community assemblages in this system [29],
and recent work has shown that facilitative microbial effects
on plant population dynamics increase in higher stress,
higher elevation sites in the Florida Scrub [11]. Flatwoods
occupy the lowest elevation sites and have the highest
vegetation density followed by scrubby flatwoods (inter-
mediate elevation and vegetation density) and rosemary
scrub (highest elevation and lowest vegetation density).
Rosemary scrub occurs as isolated patches across the
landscape surrounded by scrubby flatwoods and flatwoods,
providing naturally replicated stress gradients to test the
relationship between stress and network structure.

In July 2017, soil samples were collected from the three
habitat types. We sampled from 71 of the 106 mapped
rosemary scrub patches at Archbold Biological Station, as
well as from the neighboring scrubby flatwoods and flat-
woods for each of the 71 replicate focal locations (Fig. 1).
Sampling points for each soil core were randomly selected
within the target habitats using ArcGIS (Version 10.5.1).
Cores were divided into two depths: crust (0–2.5 cm depth)
and subterranean (9–11.5 cm depth) for a total of 426 sam-
ples (71 locations × 3 habitat types × 2 soil depths). Each
sample was the aggregation of 3 cores within ~2 m of the
sampling point. Samples were flash frozen in 50 mL conical
tubes in the field using liquid nitrogen and stored at −80 °C.

Microbiome DNA extraction and sequencing

Total genomic DNA was extracted from 1 g soil samples
using the E.Z.N.A. Soil DNA Kit (OMEGA Bio-Tek,
Norcross, GA, USA) following manufacturer’s instructions
with minor modifications. To increase the amount of DNA
obtained from sandy soils with few microbes, homo-
genization was performed in 15 mL conical vials instead of
microcentrifuge tubes, then the supernatant was transferred
to microcentrifuge tubes for heat incubation and alkaline
lysis. We subsampled available extractions, selecting
40 sextuplet (3 habitat type × 2 soil depth) sample combi-
nations that passed our initial quality control checks using
endpoint PCR and gel electrophoresis. Because of our
previous work showing strong interactions between the soil
microbiome and endangered rosemary scrub plants
[11, 33, 34], we sequenced additional samples from the
rosemary scrub (24 crust and six subterranean samples). We
also sequenced six negative controls in which 1 mL of
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Ultrapure Water (G-Biosciences; 786-293) was used in
place of soil during DNA extractions to test for potential
contamination during the extraction process. In total,
276 samples were sequenced (270 soil extractions and six
negative controls). Fungal and prokaryotic genomic librar-
ies were prepared and sequenced at the University of
Minnesota Genomics Center (UMGC) following the two-
step dual-indexing approach in [35]. 16S_V4 and ITS1
amplicons (Earth Microbiome Project primers [36–39])
were sequenced on two Illumina MiSeq lanes (v3, 300 bp
paired end) at UMGC to characterize prokaryotic and fungal
communities, respectively.

Bioinformatic processing

Reads were demultiplexed using bcl2fastq (Illumina). We
merged reads from both lanes to counterpart fastq files, built
directory structures, and created paired-end manifest files
using Supplementary Files 1–4. We processed sequencing
data with associated metadata (Supplementary Table 1)
through QIIME2 (v2018.8; Supplementary File 5; ref. [40])
to remove sequencing adapters and chimeras, join paired-
end reads, classify operational taxonomic units (OTUs), and
calculate diversity metrics. OTUs, which were Exact
Sequence Variants after denoising with Dada2 in QIIME2,
were grouped into “species” based on 97% similarity to

references in the Greengenes (v13_8; [41, 42]) and UNITE
(v7_01.12.2017; [43]) databases for prokaryotic and fungal
classification, respectively. Higher levels of taxonomic
organization such as order and phylum were attached to
species assignments. All six negative controls had <40
(20.9 ± 0.9) reads after denoising, which is consistent with a
lack of contamination in our samples. Samples were rarefied
to 2000 reads to calculate OTU richness, diversity (Shannon
index), and evenness (Pielou’s index). Samples with <2000
reads (10 of 270 prokaryotic and 9 of 270 fungal samples)
were excluded from analyses because their rarefactions
curves did not reach saturation. Singletons were not
removed, unless otherwise indicated, as their removal
(OTUs with <2 or <20 reads) did not affect alpha diversity
differences among habitats (Supplementary Fig. 2). We
used combined relative abundances (i.e., taxon read count/
total read counts in sample) of prokaryotes and fungi to
construct co-occurrence networks [44, 45] and calculating
cohesion as suggested by Herren and McMahon [17].

Microbial abundance and diversity analyses

We quantified the environmental stress experienced by
microbial communities by measuring prokaryotic abun-
dance (natural log of the number of genomic target sites for
16S_V4 primers per microliter in a sample) using a qPCR

Fig. 1 Schematic of sampling sites and stress gradients. (Left) Map
of replicate stress gradient sampling sites at Archbold Biological
Station, Venus, FL, USA (scale bar, 500 m). Dots indicate locations of
the 40 replicate stress gradients from which soil samples were col-
lected in the six environments (2 soil depths × 3 habitat types), and
triangles represent 24 additional rosemary scrub sites that were

sampled. (Right) Diagram of environmental gradient from low stress
(flatwoods) to intermediate stress (scrubby flatwoods) to high stress
(rosemary scrub). Images are examples of each habitat and have
colored dots that represent habitat IDs used in the rest of this work
(Photo Credits: D. Revillini, B. Almeida).
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dual-indexing approach [35]. We used prokaryotic abun-
dance as a proxy for microbial stress as it is analogous to
using plant biomass to estimate stress in plant communities
[46–48]. To quantify relative levels of stress between dif-
ferent soil depth × habitat combinations, we first performed
an analysis of deviance in which a mixed model factorial
ANOVA (fixed effects: habitat, depth, habitat × depth;
random effect: replicate focal location) was compared to a
null model containing only the random effect followed by a
Tukey’s HSD test. The resulting stress gradient from least
(1) to most stressful (6) environment was: flatwoods crust <
scrubby flatwoods crust < rosemary crust < flatwoods sub-
terranean < scrubby flatwoods subterranean < rosemary
subterranean. We then regressed prokaryotic abundance
against the stress ranking using a Spearman’s Correlation
test to confirm that prokaryotic abundance decreases (i.e.,
stress increases) along this ranked gradient. After this
confirmation, we used Spearman’s Correlations to test how
richness, diversity, and evenness varied along this stress
gradient.

Microbiome network construction

In order to understand how the structure of microbial com-
munities changed along the stress gradient, we constructed
co-occurrence networks using SparCC (Version
2016_10_17; ref. [49]) with OTUs present in ≥10% of all
samples [17] and default parameters. Significance of corre-
lations between taxa abundances was calculated using 1000
permutations. SparCC was used in place of shuffled Pearson
correlation coefficients because it accounts for sparse, com-
positional data. We constructed six networks (one for each
habitat × depth combination) rather than one large network.
Building individual co-occurrence networks enabled com-
parisons of network structure, like modularity, across the
stress gradient, and minimized the effects of broad habitat
preferences for one of the six habitat × depth combinations
(e.g., microbes forming a flatwoods crust module). This also
allowed for comparing how co-occurrences between taxa
change along the stress gradient. For example, if pairs of taxa
switch from negative to positive associations when transi-
tioning from low to high-stress environments, this relation-
ship would not be visible in a network in which communities
from all stress levels are combined. Essentially, strong
negative and positive associations at low and high-stress
extremes, respectively, would cancel each other out (i.e., taxa
would have weak correlations), which would be indis-
tinguishable from weak associations between taxa that
remain constant along the gradient.

To provide insight into the role of stress in microbial
networks, we then quantified two network properties that
have been associated with stability of ecological commu-
nities in perturbation studies: (1) the number and strength of

positive correlations, and (2) how compartmentalized the
network is, via cohesion and modularity analyses, respec-
tively [6, 17, 18].

Modularity

To understand how modularity changed across the stress
gradient, we first identified modules (groups of taxa whose
abundances are more correlated/anti-correlated with each
other than the rest of the community) using the
Clauset–Newman–Moore algorithm (greedy_modularity_
communities from the networkx Python package; 50). We
then calculated modularity, a measure of whether connec-
tions tend to occur within or between modules, using the
quality function in the networkx Python package. The
Clauset–Newman–Moore algorithm identifies modules by
starting with each node in its own “module” and sequen-
tially joining pairs of these modules that increase the
modularity metric (Q) the most until additional pairing no
longer increases modularity [50]. Modularity (Q) is calcu-
lated using the following equation from [51]:

Q ¼ 1
2m

X

ij

Aij � kikj
2m

� �
δðci; cjÞ;

Where m is the number of significant pairwise correlations
between taxa abundances in the network, Aij is 1 if OTUs
i and j are connected and 0 if they are not, ki and kj are the
number of taxa that have significant correlations with taxa
i and j, respectively, and δ(ci, cj) equals 1 if i and j are in the
same module and zero if they are not. The ðAij � kikj

2mÞ
component of modularity calculates the probability that a
connection exists between i and j given how well-connected
i and j are to the rest of the network (i.e., Aij is the observed
value and kikj

2m is the expected value). This probability is used
to weight connections between nodes within the same
module (i.e., when δ(ci, cj) is equal to 1). Large, positive
modularity values (i.e., close to 1) indicate that more
connections occur within, rather than between, modules
compared to random chance [52]. Communities with high
modularity tend to be more stable because effects from
changes in abundance of one species are more strongly
limited to that species’ module [16]. We calculated one
value of modularity for each environment’s network for a
total of six modularity values. To determine if stress can
explain variation in modularity, we used a Spearman’s
Correlation to test the relationship between modularity and
the stress rankings of our six environments.

Cohesion

By characterizing positive and negative co-occurrences
separately, cohesion provides insights into associations
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among taxa caused by both positive and negative species
interactions and/or by both similarity and differences in the
niches of microbial taxa [17]. Two cohesion values (posi-
tive and negative) are calculated for each sample (j) as the
sum of the significant positive or negative correlations
between taxa weighted by taxa abundances:

Cpos
j ¼

Xn

i¼ 1

ai � ri;r > 0 Positive Cohesionð Þ:

and

Cneg
j ¼

Xn

i¼ 1

ai � ri;r < 0 Negative Cohesionð Þ;

where ai is the abundance of taxon i in sample j and ri;r > 0

and ri;r < 0 are positive and negative connectedness,
respectively [17]. Within a given network (i.e., one of
the six habitat × depth combinations), the positive (ri;r > 0)
and negative connectedness (ri;r < 0) for a given taxon i
were calculated as the average of all its significant
positive or negative correlations with all other microbial
taxa found in the network. Negative and positive cohesion
range from −1 to 0 and 0 to 1, respectively, with higher
absolute values signifying more and/or stronger correla-
tions. Communities with larger negative cohesion values
tend to be more stable, as their composition is less
variable over time (i.e., have lower beta diversity between
sampling times; 17).

We used the two cohesion values to evaluate two metrics
of the microbial networks. First, we calculated the propor-
tion of negative to positive co-occurrences as the absolute
value of negative:positive cohesion, which allowed us to
determine if more stressful environments are better char-
acterized by processes driving negative associations, which
might include competition and niche divergence, than less
stressful environments. We then tested the relationship
between stress and negative:positive cohesion using a
Spearman’s Correlation test with the stress rankings of our
six environments as the explanatory variable. Second, we
tested the relationship between stress and total cohesion—a
metric of network complexity calculated as the sum of
positive cohesion and absolute value of negative cohesion
—using a Spearman’s Correlation test with the six envir-
onmental stress rankings.

Next, to determine which cohesion value (positive or
negative) was more sensitive to the stress gradient, we
regressed both positive cohesion and the absolute value of
negative cohesion against the six ranked environments
(Spearman’s Correlation test) and compared these two
correlations to each other using the paired.r function
(a Fisher z-transformation followed by a z-test) in the
R package psych. We also calculated the slopes of the

relationships of positive and negative cohesion with stress
using a nonparametric Siegel regression (mblm function in
the mblm R package).

Microbial composition and function analyses

To gain additional insight into how the microbial community
changed across the stress gradient, we further assessed
abundances of different prokaryotic and fungal taxa as well
as fungal functional guilds across the stress gradient. Counts
for OTUs were normalized separately for prokaryotic and
fungal communities by dividing by the total number of
counts within a sample. We tested if taxa abundances were
affected by the stress gradient by correlating abundance with
the stress rankings of our six habitats using Spearman’s
Correlation tests and correcting for multiple comparisons
(Benjamini–Hochberg). We also assigned fungi to functional
guilds by associating “species”, as identified with 97%
similarity to representative sequences in the UNITE fungal
database, with guilds in the FunGuild database [53] and
filtering the OTU abundance tables for guild assignments
with confidence rankings “Highly Probable” and “Probable”
[54, 55]. FunGuild associates taxonomic groups to func-
tional guilds such as “wood saprotroph”, “plant pathogen”,
and “ectomycorrhizal fungi”, according to an online com-
munity annotated database. Using the same procedure as for
taxonomic groups, we then tested if fungal functional guild
abundances were affected by the stress gradient.

Results

Quantification of the stress gradient

The qPCR data measuring prokaryotic abundance estab-
lished a clear stress gradient across all six habitat/depth
combinations in which stress was inversely proportional to
prokaryotic abundance (Fig. 2). Subterranean soils con-
tained lower estimated prokaryotic abundance than crust
soils (Depth: F1,187= 269.4, P < 0.0001) and prokaryotic
abundance decreased across our habitat stress gradient from
flatwoods to scrubby flatwoods to rosemary scrub (Habitat:
F2,187= 58.2, P < 0.0001). Expanding on a priori knowl-
edge of the study system’s gradient of habitat types, our
data supported the interpretation of relative levels of stress
across this ecosystem as: flatwoods crust < scrubby flat-
woods crust < rosemary crust < flatwoods subterranean <
scrubby flatwoods subterranean < rosemary subterranean.
This sequence of habitat and depth combinations is strongly
correlated with prokaryotic abundance (Fig. 2, Spearman’s
⍴=−0.748, P < 0.0001). Thus, hereafter, we discuss the
stress gradient following this sequence of six environments
(assigned values 1–6).
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Microbiome diversity and network properties across
the stress gradient

To assess how microbial community properties change
along the stress gradient, we compared richness and diver-
sity across these six environments. Overall, fungal and
prokaryotic OTU richness decreased with increasing stress
across the six environments (Fig. 3a, b; Prokaryotes:
Spearman’s ⍴=−0.517, P < 0.0001; Fungi: Spearman’s
⍴=−0.807, P < 0.0001). This decreasing relationship with
the stress gradient was significant, but weaker for Shannon
diversity (Supplementary Fig. 3a, b; Prokaryotes: Spear-
man’s ⍴=−0.479, P < 0.0001, Fungi: Spearman’s
⍴=−0.652, P < 0.0001), because species evenness
remained fairly constant across habitats (Supplementary
Fig. 3c, d; Prokaryotes: Spearman’s ⍴= 0.015, P= 0.805,
Fungi: Spearman’s ⍴=−0.165, P= 0.008). The taxa in our
co-occurrence networks that are present in our high stress
(low diversity) sites are largely a subset of those present in
our low stress (high diversity) sites (Supplementary Fig. 4).
Only 4.6% (33/720) of taxa whose abundances were used to
construct the six co-occurrence networks are unique to the
high-stress subterranean samples (Supplementary Fig. 4a).

Furthermore, stressed microbial communities had lower
network stability as evidenced by our analyses of mod-
ularity and cohesion. Microbial community networks
decreased in modularity along the stress gradient (Fig. 3c;
Spearman’s ⍴=−0.886, P= 0.033), indicating that
microbial communities in high-stress environments are less

compartmentalized than in low stress environments. We
also found that the ratio of negative:positive cohesion
decreased with stress (Fig. 3d; Spearman’s ⍴=−0.712,
P < 0.0001), indicating that positive associations between
taxa, rather than negative associations, dominate in high-
stress environments. Similarly, total cohesion (sum of
positive cohesion and the absolute value of negative cohe-
sion) decreased with increasing stress (Fig. 4a, Spearman’s
⍴=−0.896, P < 0.0001), indicating that community net-
works become less complex across the stress gradient.

This reduced complexity of microbial networks (i.e.,
decreased total cohesion) was attributable to both positive
(Fig. 4b, Spearman’s ⍴=−0.658, P < 0.0001) and negative
(Fig. 4c, Spearman’s ⍴=−0.924, P < 0.0001) cohesion
decreasing in magnitude across the stress gradient; how-
ever, negative co-occurrences were a much stronger driver
of decreasing total cohesion than positive co-occurrences
(Z= 9.25, P < 0.0001). In fact, the decrease in negative
cohesion (Siegel slope=−0.0303; 95% CI (−0.0296,
−0.0320)) was twofold higher than that of positive cohe-
sion (Siegel slope=−0.0141; 95% CI (−0.0138,
−0.0158)), thereby driving the decrease in negative:positive
cohesion. This amounted to negative cohesion declining in
magnitude by 53% between the lowest stress environment
(flatwoods crust) and the highest stress environment
(rosemary subterranean).

Characterization of taxonomic and functional
groups across the stress gradient

We then quantified changes in prokaryotic taxa, fungal taxa,
and fungal functional guilds across the stress gradient to
understand which groups are impacted by the stress gra-
dient. In general, we found that several oligotrophic (i.e.,
stress tolerant) taxa and plant mutualists increased in rela-
tive abundance along the stress gradient (Supplementary
File 7). Oligotrophs positively associated with the stress
gradient included the bacterial phylum Acidobacteria
(Spearman’s ⍴= 0.686, PFDR < 0.0001) and the bacterial
order Xanthomonadales (Fig. 5a, Spearman’s ⍴= 0.695,
PFDR < 0.0001; most of our OTUs belonged to the oligo-
trophic family Sinobacteraceae and not the plant pathogen
genera Xanthomonas or Xylella). Plant–mutualist groups
positively associated with stress included the nitrogen-
fixing Rhizobiales (Fig. 5a, Spearman’s ⍴= 0.650, PFDR <
0.0001), the ectomycorrhizal fungal orders Russulales
(Fig. 5b, Spearman’s ⍴= 0.385, PFDR < 0.0001) and Bole-
tales (Fig. 5b, Spearman’s ⍴= 0.453, PFDR < 0.0001), and
the arbuscular mycorrhizal fungal order Glomerales
(Spearman’s ⍴= 0.162, PFDR= 0.016). Conversely, plant
pathogens tended to decrease with stress. The fungal order
Capnodiales, of which our OTUs were predominantly from
the pathogenic family Mycosphaerellacea, had the strongest

Fig. 2 Quantifying microbial stress. Estimation of microbial
stress by prokaryotic abundance in different habitat/depth combina-
tions. Graph depicts natural log of the number of 16S_V4 primer
target sites (i.e., number of prokaryotes) in soil DNA extractions. X-
axis represents the categorical stress rankings of the six environments
along the stress gradient. P value is derived from a Spearman’s
Correlation test. Detailed statistics are available in Supplementary
Table 3.
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negative correlation with the stress gradient (Fig. 5b,
Spearman’s ⍴=−0.700, PFDR < 0.0001). Abundance of
Capnodiales decreased from making up a substantial por-
tion of communities in the least stressful environment
(7.7% ± 0.2%, mean ± s.e.m.) to 0.2% (±0.009% s.e.m.) in
the most stressful habitats. Consistent with the taxonomic
assessment above, we found that the plant pathogenic
functional guild assigned using FunGuild decreased in
abundance across the stress gradient (Spearman’s ⍴=
−0.701, PFDR < 0.0001), while ectomycorrhizae were the
fungal guild most positively correlated with the stress gra-
dient (Spearman’s ⍴= 0.495, PFDR < 0.0001). In fact, the
percentage of fungal species classified as members of
mutualistic guilds that are positively associated with the
stress gradient was ~4.5 times greater than among randomly
drawn subsets of fungal species (P < 0.0001, see Supple-
mentary Fig. 5 for details).

Discussion

In this study, we found support for environmental stress
destabilizing microbial community networks: microbes in
higher stress habitats were less diverse, less modular, and
dominated by positive co-occurrences (i.e., having lower
negative:positive cohesion) compared to communities in

low stress habitats. We also found that negative cohesion
(i.e., strength/number of negative associations) decreased
more strongly along the gradient than positive cohesion
(i.e., strength/number of positive associations). To deter-
mine if the increased representation of positive correla-
tions in high stress could be due, at least in part, to more
positive interactions as opposed to greater niche overlap,
we compared changes in abundance of mutualists between
low and high-stress sites, finding that mutualistic taxa
have strong positive relationships with the stress gradient
while pathogenic fungi have strong negative relationships.
Given that microbial communities often experience more
species turnover (i.e., are less stable) when negative cor-
relations are less frequent [17, 18, 56] and when network
modularity is reduced by removal of taxa important to
modular structure [19, 57], our results indicate that
stressed microbial communities have lower network sta-
bility. This outcome is concerning, as it suggests that
increased anthropogenic stress could select for microbial
network topologies that are more prone to rapid fluctua-
tions and regime shifts. Below we discuss ecological
mechanisms through which environmental stress can
destabilize microbial networks: (1) how changes in taxo-
nomic and functional group composition can lead to
increasing representation of positive correlations in high-
stress sites, and (2) how decreasing modularity and

Fig. 3 Characterizing
microbial diversity and
network properties across the
stress gradient. a, b Decrease in
prokaryotic (a) and fungal (b)
community richness (observed
OTUs) across the stress gradient.
Error bars depict standard error
of the mean. c Decrease in
modularity of microbiome
networks across the stress
gradient. A single value of
modularity was calculated for
each environment. d Decrease in
ratio of negative:positive
cohesion across the stress
gradient. Box plots show inner
quartiles and median negative:
positive cohesion. Both negative
correlations of modularity and
negative:positive cohesion with
stress are consistent with
decreasing microbiome stability
across the stress gradient. X-axis
represents the categorical stress
rankings of the six environments
along the stress gradient.
Detailed statistics are available
in Supplementary Table 3.
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negative:positive cohesion (i.e., fewer and/or weaker
negative correlations relative to positive correlations) in
stressed environments can combine to destabilize micro-
bial communities.

Loss of antagonistic interactions and increased
environmental filtering as drivers of decreasing
negative:positive cohesion in stressful
environments

Within microbiome networks, correlations between taxa can
be driven by two non-mutually exclusive mechan-
isms: species interactions and environmental filtering
[13, 58]. In the case of species interactions, positive cor-
relations can be caused by facilitation/mutualism among
taxa and negative correlations can result from competition
[44, 59]. In the case of environmental filtering, positive
correlations among taxa reflect ecological or functional
similarity [60], while taxa with divergent niche require-
ments are negatively correlated. While both ecological
mechanisms could explain the dominance of positive
cohesion in high-stress habitats, our data support a role for
species interactions. We observe decreases in relative
abundance of pathogens and increases in relative abundance
of microbial mutualists along our stress gradient, which
agrees with previous complementary in vitro work
demonstrating increased facilitation among microbes in
stressful environments [9, 10]. We discuss both
alternatives below.

The Stress Gradient Hypothesis [61], primarily devel-
oped to describe plant-plant interactions, provides general
predictions about how species interactions change with
increasing stress. It posits that as stress intensifies, the fre-
quency of competitive interactions decreases and that of
facilitative interactions increases, which is consistent with
the decreasing negative:positive cohesion along our stress
gradient. This outcome can occur through two mechanisms:
(1) “competitive” taxa that engage in many antagonistic
interspecific interactions being replaced by slow-growing,
stress-tolerant species (e.g., oligotrophic microbes) as stress
increases [62, 63], and (2) species that provide direct ben-
efits to other community members increasing as stress
increases [64]. Our data support the former. For example,
we found that the oligotrophic phylum Acidobacteria [65]
showed the strongest positive correlation with the stress
gradient.

It is also likely that facilitative taxa increased in relative
abundance along the stress gradient while antagonistic taxa
decreased. In our study, plant–microbial mutualists are
some of the taxa most positively correlated with the stress
gradient across both fungi and prokaryotes. For example,
ectomycorrhizal fungi were the fungal guild most positively
correlated with the stress gradient, increasing from only
21% (±3.3% s.e.m.) in the least stressful environment to
64% (±4.7% s.e.m.) in the highest stress environment. We
found a similar relationship between stress and
plant–bacterial mutualists, such as the order Rhizobiales
and family Sinobacteraceae [66]. We also saw concomitant

Fig. 4 Changes in cohesion across the stress gradient. a Decrease in
total cohesion (sum of positive cohesion and the absolute value of
negative cohesion) across the stress gradient. b Decrease in positive
cohesion across the stress gradient. c Decrease in the absolute value of
negative cohesion across the stress gradient. Negative cohesion
decreases more strongly across the stress gradient than does positive
cohesion (P < 0.0001), driving the decrease in negative:positive
cohesion seen in Fig. 3d. Box plots show inner quartiles and median
values. X-axis represents the categorical stress rankings of the six
environments along the stress gradient. P values are derived from
Spearman’s Correlation tests. Detailed statistics are available in Sup-
plementary Table 3.
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decreases in species that engage in antagonistic interactions.
For instance, the plant fungal pathogen guild showed one of
the strongest negative relationships with environmental
stress (Spearman’s ⍴=−0.701). These results demonstrate
that relative abundances of facilitative microbes increase
and antagonistic microbes decrease with stress for at least
one major group in the community, plants. Whether this
extends to how microbes interact with each other is less
clear because there is far less information about how dif-
ferent microbial taxa affect one another. However, experi-
mental exposure of microbial communities to stress has
demonstrated that microbes switch from competition to
facilitative interactions when placed in toxic media [9] and
engage in metabolic cross-feeding when a common nutrient
is depleted [10]. As a result, it is likely that the increase
in facilitative potential seen between microbes and plants in
our system [33, 34] also extends to interactions between
microbes themselves.

The alternative ecological mechanism, environmental
filtering, may also drive the decrease in negative:positive
cohesion in high-stress conditions. For example, the dom-
inance of ectomycorrhizal fungi in high-stress environments
may reflect that in xeric conditions very few niches are
available for fungi, and that plant roots constitute a major
proportion of available plant habitat in these circumstances.
However, given that our data support both ecological
mechanisms underlying the Stress Gradient Hypothesis
(i.e., greater representation of stress-tolerant taxa and

increasing facilitation), a decrease in the ratio of negative:
positive biotic interactions is likely to be at least part of the
microbial response to stress, even if it is not entirely inde-
pendent of abiotic factors selecting for higher niche overlap.

Low modularity and positive associations as
processes destabilizing stressed communities

While increasing dominance of positive correlations or
reduction in negative associations in microbiomes can
destabilize communities alone [17, 18, 56], the lower
modularity in high-stress sites may exacerbate these con-
sequences. For example, Agler et al. [19] found that
removal of taxa important for structuring community sub-
networks (i.e., modules) led to greater variation in micro-
biome composition than when those taxa are present (i.e.,
when modular structure is likely maintained). Modular
organization of microbial communities can reflect: (1)
groups of taxa that interact with each other more than with
other groups, or (2) groups of taxa that share a niche distinct
from other groups. In either scenario, a modular organiza-
tion insulates these groupings from disturbances by ensur-
ing that fluctuations in abundances of sensitive taxa within
one module are unlikely to spread to taxa in other modules
due to limited linkages between them [16, 67].

A major argument for the destabilizing effects of positive
co-occurrence/interactions in microbial communities cen-
ters around the role of positive feedback loops in which

Fig. 5 Microbial orders most
positively and negatively
impacted by the stress
gradient. a, b Top ten
prokaryotic (a) and fungal (b)
orders whose abundances are
most positively or negatively
correlated with the stress
gradient (all correlations with
P < 0.0001 after FDR
correction). Abundances of taxa
from kingdom to species
identification are included in
Supplementary File 6.
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microbes that support each others’ fitness outcompete other
microbes [18]. As a result, the community as a whole
becomes dependent on maintaining those feedback loops,
and perturbations experienced by any of these loops’
members can rapidly propagate through the entire system
[18]. In contrast, negative co-occurrences/interactions can
lead to negative feedback loops that dampen not only per-
turbations that their own members experience, but also
those experienced by linked positive feedback loops [68].
Low modularity in high-stress environments indicates that
cross-module associations among taxa are likely to be more
prevalent than in low stress environments; thus, environ-
mental perturbations impacting taxa in one module would
be more likely to propagate to other modules because there
are relatively more associations (i.e., interactions or niche
similarities) between taxa in different modules at high-stress
sites (Fig. 6). For example, in our system, plant–microbial
mutualists such as ectomycorrhizal fungi, Rhizobiales, and
Sinobacteraceae could support each other by facilitating
their shared plant partners, and the accompanying low
modularity would mean that any perturbations experienced
by this dominant positive feedback loop would be easily
propagated to the rest of the microbial community. The
increased connectivity between modules could be due to
increased interactions with the plant–mutualist module (if
linkages in the microbial network represent species inter-
actions), or reliance on the same environmental factors (if
linkages in the microbial network represent high niche
overlap). For example, in our system, the importance of
plant roots as a microbial niche may increase with
increasing stress. As a result, environmental effects on their
shared plant root niche (e.g., replacement of compatible
plants with incompatible plants, destruction of the plant
community, etc.) will impact more taxa under high-stress
than low stress, because more microbes share plant roots as
a niche requirement.

Conclusions and implications

Our study provides the first evidence that naturally-
occurring microbiomes display network properties char-
acteristic of unstable communities when under persistent
stress. Because microbes can explain variation in traits
important to plant distributions (e.g., growth rates, seedling
establishment, secondary compound synthesis, etc. [69–74])
and undergird a plethora of ecosystem services (e.g.,
nutrient cycling; [3, 75, 76]), understanding how the sta-
bility of microbiomes is impacted by stress has important
implications for modeling species’ distributions [77],
maintaining ecosystem services [3, 77], and improving
agriculture [1]. However, the development of general and
testable principles for how these important, microscopic

communities respond to even common environmental stress
gradients is still in its early stages [3]. By characterizing
microbiome network structure along a highly replicated,
natural stress gradient, we demonstrate that, in high-stress
environments, microbial taxa co-occur more frequently and
the modularity of their communities breaks down.

As anthropogenic disturbances increasingly stress eco-
systems, microbial communities may become destabilized.
Our study system is one example of a naturally-occurring
stress gradient that can serve as a model for environmental
stressors that are predicted to increase in the Anthropocene
(e.g., lower water availability; 4). While we find dramatic
relationships between environmental stress and stable net-
work properties (78% and 51% of variation in modularity
and negative:positive cohesion was explained by our stress
gradient, respectively), we encourage testing these

Fig. 6 Role for environmental stress in destabilization of microbial
networks. Communities in high-stress environments (right) compared
to communities in low stress environments (left) have less stable
network properties. Communities under high stress are less species
rich (a), less modular (b), and are less dominated by negative asso-
ciations (lower negative:positive cohesion, c). The consequences for
microbiomes (d) are that the reduction or loss of a taxon in response to
an environmental disturbance (lightning bolt) can more easily propa-
gate to the rest of the community (impacted taxa in black, unimpacted
in gray). Positive associations (blue) are important pathways through
which the effects on one taxon can cascade to impact other taxa in the
community because: (1) the loss of a facilitator reduces the facilitated
taxon’s fitness and/or (2) positively associated taxa are likely to be
impacted by the same environmental factors (i.e., their niches strongly
overlap).
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relationships in a wider variety of ecosystems, including
soil communities of other terrestrial biomes and micro-
biomes from aquatic habitats. We hope this study will
provide a roadmap for characterizing microbiome network
structures in a diverse range of study systems to generate
broad insight into whether a negative relationship
between stress and microbiome stability is a unifying
principle across microbial communities. We also advocate
for future studies elucidating how the consequences of
unstable microbial communities cascade upwards to impact
socially important goals such as restoration efforts and
agriculture.

Data availability

Demultiplexed sequence data are available at NCBI (Bio-
Project: PRJNA559142). Details of programming lan-
guages, module versions, and virtual environments used for
analyses outside of QIIME2 are listed in Supplementary
Table 2. Extended ANOVA tables and detailed statistics for
analyses are available in Supplementary Table 3. OTU
tables, taxonomic assignments, taxonomic abundances,
FunGuild fungal functional group abundances, network
edge lists, modularity, and cohesion values necessary for
analyses are provided in Supplementary File 6.

Code availability

The files necessary to prcoess the demultiplexed sequence
data through QIIME2 are provided in Supplementary Files
1–5.
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