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Abstract
1.	 The permafrost regions of the boreal forest store a large amount of carbon, 

which can be affected by ecological disturbance, especially the interference of 
forest fires. Understanding the dynamic responses of the post-fire soil fungal 
community is essential for predicting soil carbon dynamics.

2.	 We used a post-fire chronosequence (areas with 3, 25, 46 and >100 years post 
fire [ypf]) in Canadian boreal forests with continuous permafrost to examine 
the responses of fungal communities and fungal genes associated with biogeo-
chemical cycling to fire in the surface and near-surface permafrost layers (0–5, 
5–10 and 10–30 cm depth). We hypothesized that as the forest recovers from 
fire, the fungal communities and functional genes associated with biogeochemi-
cal cycling will also recover temporally and spatially, which will in turn affect soil 
carbon storage.

3.	 Our results demonstrate that the fire has long-term effects on fungal com-
munities and functions in the surface and near-surface soils. The fungal spe-
cies richness in the 0–5 and 5–10 cm soil layers increased with time since fire, 
which required at least 46 years to recover to pre-fire levels. Ascomycota in each 
of the soil layers in the recently burned area (3 ypf) and ericoid mycorrhizas 
Oidiodendron maius in the 10–30 cm soil layer in the control area were recog-
nized as indicator taxa.

4.	 The examination of functional genes revealed that the diversity of potential 
genes and the expression of genes related to carbon degradation (e.g. chitinase, 
cellobiase, exoglucanase and endoglucanase) in recently burned area increased in 
the surface soil, whereas, decreased in the deep soil, suggesting the fire affect 
the loss of carbon differently in the surface and deep soils in the early stages 
after fire.
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1  |  INTRODUC TION

Boreal forests account for about 50% of the total carbon (C) pool 
in global forest ecosystems (Malhi et al.,  1999) and about 80% of 
them are located in upland soils, of which the great majority grow 
in environments underlain by different types of permafrost (Helbig 
et al., 2016). Global climate change has led to permafrost thawing 
(Baltzer et al.,  2014) and frequent wildfires (Walker et al.,  2019), 
that impact the global C cycle and have a positive feedback loop to 
the climate change, that is, permafrost thawing and frequent wild-
fires cause warming, which further accelerates permafrost thawing 
and frequent wildfires. In boreal forests, the soil microbes, espe-
cially fungi, play an important role in the C cycle by affecting the 
decomposition of organic matter and the nutrient cycle of plants 
(Boberg, 2021; Talbot et al., 2008). Ectomycorrhizal fungi form per-
vasive reciprocal symbiosis with trees and ground vegetation in bo-
real forests (Sun et al.,  2015). Many species of ground vegetation 
can additionally form symbioses with ericoid mycorrhizal fungi. 
Mycorrhizal fungi obtain fixed C from their host plants in exchange 
for mineral nutrients, such as phosphorus and nitrogen, which pos-
itively affect plant growth (Smith & Read, 2010). Mycorrhizal fungi 
are known drivers of soil C sequestration and particle aggregation 
and have a significant impact on the composition of microbial and 
plant communities (Genre et al., 2020).

Boreal forest wildfires occur more frequently and are more se-
vere due to increasing global temperatures, decreased precipitation 
and longer fire seasons (Balshi et al., 2009). Wildfires cause soil to 
heat up to 100–700°C (Certini, 2005), which has a fatal effect on 
fungi at the soil surface (Cairney & Bastias,  2007), with mortality 
occurring as temperatures surpass 60°C (Hart et al., 2005). The high 
soil temperatures can also affect the fungal reproduction ability 
and hinder their ability to recover after a fire (Bárcenas-Moreno & 
Bååth,  2009; Glassman et al.,  2016). Meanwhile, wildfires do also 
indirectly affect soil microbial communities via ground plants and lit-
ter burning, or via changing the soil physical and chemical properties 
(Köster et al., 2021). The reduction in the ground shade and nutrients 
(Bhatnagar et al., 2018; Treseder et al., 2004) can reduce the abun-
dance of soil fungi that prefer wetter soils (Dooley & Treseder, 2012). 
The wildfires increase the soil hydrophobicity, soil temperature and 
dryness after fire (O'Donnell et al., 2009), causing volatilization of 
the soil nutrients (Dooley & Treseder,  2012) and decreasing the 
quality and quantity of soil C (Waldrop & Harden, 2008). The ash 
deposits after a fire can increase soil pH (Certini,  2005; Switzer 

et al., 2012), and together with the above-ground changes in vege-
tation will affect the soil fungal community. Understanding how the 
fungal communities respond to wildfires and post-fire environment 
changes is critical to predicting soil C dynamics.

In boreal forests, the occurrence of fire will lead to C loss be-
cause fires burn plant biomass, moss layer, a portion of the humus 
pool and a portion of the total C stored in the organic layer (Deluca 
& Boisvenue,  2012). Meanwhile, the burning of the organic layer 
affects the soil fungal communities and function related to or-
ganic matter degradation (Sun et al., 2015). Fire also indirectly in-
creases the activity of microbiome by increasing soil temperature 
and moisture (O'Donnell et al., 2011). Furthermore, the increase in 
soil pH post-fire reduces the richness and diversity of mycorrhizal 
fungi (Day et al., 2019; Zhou et al., 2019a), which shifts the soil mi-
crobial communities from fungal to bacterial dominance (Aaltonen 
et al.,  2019). In turn, these changes affect the soil organic matter 
(SOM) decomposition, and the cycling of C, nitrogen and phosphorus 
(Zhou et al., 2019a). Many studies have investigated the short-term 
effects of wildfires on soil microbial communities (Pulido-Chavez 
et al.,  2021). A few studies have also assessed the long-term ef-
fects of fire on the fungal communities in humus (0.5–1.0  cm) or 
top soil layer (0–10 cm) along a post-fire chronosequence in boreal 
forest (Holden et al., 2013; Sun et al., 2015). The fungal communi-
ties between soil depths in these studies, however, have not been 
evaluated. Studies have shown that the negative effects of fire on 
microbial biomass can remain for ~15 years in boreal forests (Dooley 
& Treseder, 2012) and ectomycorrhizal colonization required up to 
15 years to return to pre-fire levels (Treseder et al., 2004). The com-
position and structure of the ectomycorrhizal community had stabi-
lized 41 years after the wildfire, in jack pine stands in northeastern 
Alberta of Canada (Visser, 1995).

Meanwhile, the soil depth acts as an ecological filter of soil prop-
erties, and the heterogeneous environments affect the soil fungal 
diversity, composition and function along the vertical profile (Xu 
et al., 2021). In boreal forest, the fungal communities differed signifi-
cantly in the soil profile, with saprophytic fungi dominating the lit-
ter layer, while mycorrhizal fungi were more dominant in the deeper 
layers (McGuire et al.,  2013; Santalahti et al.,  2016). Fire leads to 
the loss of litter in the soil surface and changes the physical proper-
ties of soil, leading to permafrost thaw and an increase in the depth 
of the active layer (the seasonally freezing and thawing layer above 
the permafrost), exposing previously frozen SOM to decomposition 
(Jiang et al., 2015). Therefore, we hypothesized that the occurrence 

5.	 In conclusion, the fires significantly altered the fungal communities and func-
tional genes related to carbon storage along the soil vertical gradients and along 
the post-fire chronosequence.

K E Y W O R D S
functional gene expression profile, fungal community structure, permafrost soil, temporal and 
soil vertical gradient response, wildfire
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of fire would lead to a decrease in the diversity of fungal communi-
ties related to the C cycle in the soil surface and an increase in the 
deeper active layer.

In this study, four forest areas were selected in the continuous 
permafrost region of northern Canada, which had recovered 3 years 
(3 ypf), 25 years (25 ypf), 46 years (46 ypf) and >100 years (control) 
after a wildfire. The study aims to investigate the temporal and soil 
vertical gradient dynamics of soil fungal communities and their po-
tential functions after the fire, and to assess the long-term effects 
of forest fires on the fungal community in the permafrost region. 
We hypothesized that with the forest regrowth after the fire, the 
soil fungal community composition and the function will recover to 
pre-fire level and the post-fire response of the soil fungal community 
might differ between soil depths.

2  |  MATERIAL S AND METHODS

2.1  |  Study areas

The study areas were located in a continuous permafrost zone in 
the Yukon and the Northwest Territories (66°22′N – 67°26′N and 
136°43′W – 133°45′W respectively), in Canada. The areas are char-
acterized by long, cold winters, with an annual average temperature 
of −8.8°C (mean air temperatures well below 0°C from October 
to April), and an average annual precipitation of 248 mm (Köster 
et al.,  2017). The altitude of the terrain in the region ranges from 
150 to 600 m above sea level and the soil is formed from Cretaceous 
sandstones covered by ice-rich fluvial and clay-rich colluvial de-
posits, with continuous permafrost underneath (Zhou et al., 2020). 
The dominant tree species consist of black spruce (Picea mariana 
[Mill.] Britton, Sterns and Poggenburg), white spruce (Picea glauca 
[Moench] Voss) and the ground vegetation is comprised of lingon-
berry (Vaccinium vitis-idaea L.), cloudberry (Rubus chamaemorus L.), 
bog bilberry (Vaccinium uliginosum L.) and Rhododendron groenlandi-
cum Oeder. More detailed information on the area was described 
previously (Zhou et al., 2020).

2.2  |  Sample collection

The soil samples were collected in July 2015. The measurements 
were carried out in a forest post-fire chronosequence consisting 
of forest areas burned in 2012 (3 ypf), 1990 (25 ypf), 1969 (46 ypf) 
and >100 years ago (100 ypf, set as control) along the Dempster 
Highway in Northern Canada. Wildfire history was determined 
based on Canadian government GIS data (http://www.geoma​ticsy​
ukon.ca/data) and the forest age of the control was determined 
by taking increment cores from the largest tree in the sampling 
plot using an increment borer (Zhou et al.,  2020). Three sam-
pling lines per forest age class were established. The lines were 
at least 200 m apart from each other and consisted of three sam-
ple plots (20 × 20 m) that were 50 m apart from each other (Köster 

et al., 2017). The forests burned >100 years ago were used as con-
trols, which were placed next to each burned forest area. One soil 
pit was excavated within every sample plot, and the soil samples 
were collected from three different soil depths including 0–5 cm 
(surface soil layer), 5–10 cm (middle soil layer) and 10–30 cm (deep 
soil layer), that measured from the soil surface excluding the lit-
ter layer. In total, 107 samples (4 forest areas × 3 sampling lines × 3 
sampling plots × 3 depths, with one sample missing) were available 
for analysis.

In summer, the active layer thickness of the control area 
was 28.0 ± 2.0  cm, while that of the 3  ypf was much deeper 
(101.0 ± 9.0  cm). Thus, soil samples at the 10–30 cm layer in the 
control were on near-surface permafrost layers, and those in the 
remaining forest areas were on the active layer. The thickness of 
the organic layer in the control was 16.0 ± 1.4 cm, but declined to 
5.3 ± 1.2 cm in 3 ypf (Zhou et al., 2020). As a result, soils collected 
from 5 to 10 cm layer in 3 ypf were mineral soils, while those in the 
remaining areas were organic soils (Zhou et al., 2020). All samples 
were transported in liquid nitrogen (−180°C) with a dry shipper. Each 
sample was divided into two subsamples. One was stored in a 2-ml 
Eppendorf vial (stored at −80°C in the laboratory until further anal-
ysis) from homogenized soils for DNA extraction. Another was used 
for the determination of physical and chemical properties (stored 
at 4°C in the laboratory until further analysis). The soil properties 
and vegetation characteristics of each forest area were measured 
and described previously (Köster et al.,  2017; Zhou et al.,  2019b). 
Briefly, we estimated the permafrost depths using a linear regres-
sion model of the temperature in the mineral soil against the depths. 
Soil pH was analysed using a glass electrode (Standard pH meter, 
Radiometer Analytical) in 35 ml soil suspensions, consisting of 10 ml 
of the soil sample and 25 ml of ultrapure Milli-Q water (left overnight 
to stand after mixing). The soil water content was measured using a 
soil moisture sensor (Thetaprobe ML2x, Delta-T Devices Ltd) con-
nected to a data reader (HH2 moisture meter, Delta-T Devices Ltd). 
The soil organic C and N were measured using a total organic C anal-
yser (Shimadzu TOC-V CPH, Shimadzu Corp.). Inorganic phospho-
rus was measured using the ammonium molybdate–malachite green 
method on a 96-well microplate. We used the chloroform fumiga-
tion extraction (CFE) method to estimate soil microbial biomass C, 
N and P contents. Ground vegetation biomass was measured at four 
0.20 × 0.20 m2 subplots per plot. The tree biomasses were calculated 
based on the tree diameter and height (details on environmental fac-
tors are listed in Table S1).

2.3  |  DNA extraction, Illumina MiSeq 
sequencing and data processing

Genomic DNA was extracted from a 0.25 g (fresh weight) soil sam-
ple after homogenization using NucleoSpin Soil genomic DNA kit 
(Macherey-Nagel GmbH & Co. KG) following the manufacturer's 
instructions. The DNA concentrations were quantified using the 
Qubit 2.0 Fluorometer (Thermo Fisher Scientific) and were diluted 
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to 10 ng μl−1 with nuclease-free water. The DNA was subjected to 
PCR amplification of the fungal Internal Transcribed Spacer 2 (ITS2) 
region by using the fungus-specific primers gITS7 and ITS4 (Ihrmark 
et al., 2012) containing partial TruSeq adapter sequences at the 5′ 
ends (ATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT and 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT respectively). 
The PCR reactions were performed in triplicate in a 20 μl mixture 
containing 4 μl of 5 × FastPfu Buffer, 2 μl of 2.5 mM dNTPs, 0.8 μl 
of each primer (5 μM), 0.4 μl of FastPfu Polymerase, 0.2 μl of BSA 
and 10 ng of template DNA, and the process was as follows: 3 min 
of denaturation at 95°C, 36 cycles of 30 s at 95°C, 30 s for anneal-
ing at 55°C and 45 s for elongation at 72°C, and a final extension 
at 72°C for 10 min. The PCR products were checked from a 2% 
agarose gel, and then further purified. The PCR amplicons were 
sequenced using the pair-ended (PE-300) Illumina MiSeq Platform 
at the Institute of Biotechnology, University of Helsinki. The 
raw reads were deposited into the NCBI Sequence Read Archive 
(SRA) database with Accession Number: PRJNA780219 (Zhang 
et al., 2022).

The raw sequences were denoised, quality controlled and 
clustered into operational taxonomic units (OTUs) following the 
Standard Operation Procedure (SOP) in Mothur software version 
1.39 (Schloss et al., 2009). Briefly, any chimeric and low-quality 
sequences with (i) ambiguous (N) bases, (ii) homopolymers lon-
ger than eight nucleotides, (iii) average quality score lower than 
25, (iv) chimeras (using Chimera uchim in Mothur) and (v) fewer 
than 200 nucleotides were removed. Remaining high-quality 
sequences were pairwise aligned and classified into taxonomic 
groups with an 80% bootstrap confidence by using the mothur-
formatted UNITE taxonomy reference database version 8.0 
(UNITE Community,  2019). Sequences assigned to the plant 
chloroplast and nonfungal domain were filtered out. The se-
quences were further clustered to operational taxonomical units 
(OTUs) at 97% similarity (Schloss et al., 2009). Among these, the 
OTUs with less than one read across all samples were removed 
(Olesen et al., 2017; Tedersoo et al., 2010). In total 8,512,268 se-
quence reads were obtained after de-noising and quality control, 
with an average of 79,554 ± 37,768 (mean ± standard deviation, 
with the same convention used hereafter). The fungal commu-
nity species richness (estimator Chao1; Chao, 1984), α-diversity 
index (Shannon index) and evenness (Shannon evenness; 
Shannon, 2001) were calculated with normalization data, in which 
the smallest size of the sequence number across all samples was 
used (18090).

2.4  |  GeoChip 5.0 K

GeoChip 5.0 K is a comprehensive functional gene array related to 
microbial C, nitrogen, sulphur and phosphorus cycling, energy me-
tabolism, and many other functions, for analysing the functional 
diversity, structure, potential metabolic activity and dynamics of 
microbial communities (Tu et al., 2014). In this experiment, 24 DNA 

samples were selected from 4 forest areas × 2 soil depths (0–5 cm 
and 10–30 cm) × 3 replicates per area/soil depth for GeoChip 5.0 K 
analysis. Briefly, the replicates were obtained from the pooled-
genomic DNA sample of the three soil plots in each forest area. 
100 ng of genomic DNA from the triplicates in each of the four areas 
was amplified by rolling circle amplification using the TempliPhi kit 
(GE Healthcare) and a modified protocol (Tu et al.,  2014). Two mi-
crograms of amplified genomic DNA was mixed with 3 μg μl−1 ran-
dom primers, and then labelled with 15 μl of labelling master mix, 
after purification (QIAquick purification kit) and 45 min drying in a 
SpeedVac. Finally, hybridization on GeoChip 5.0 K microarray was 
done (Liang et al., 2010; Tu et al., 2014). The data were processed 
and normalized following Glomics Inc. standard protocols (removing 
outliers and data with low signal intensities according to the signal-
to-noise ratio [SNR] < 2.0; He et al., 2007). The gene probes originat-
ing only from fungi were included in this analysis to match the fungal 
taxonomic analysis and that from bacteria, archaea and virus were 
excluded.

2.5  |  Statistical analysis

One-way analysis of variance (ANOVA) with Tukey's HSD multiple 
range tests was used to test the significant differences in soil abi-
otic and biotic factors, α-diversity, dominant fungal taxa in com-
munities and functional gene expression in each soil layer among 
the four forest areas and in each forest area between the soil layers 
using SPSS.26. We used linear regression to analyse the changes 
in fungal α-diversity, major phylum and the diversity of functional 
gene with post-fire chronosequence or soil depth. In the case of 
fungal community structure and functional gene expression pro-
files, principal coordinates analysis (PCoA) based on Bray–Curtis 
similarities at OTU level or at gene expression level was used as 
ordination method. To test how post-fire chronosequence and soil 
depth affected the fungal community structures and functional 
gene expression profiles, we used the permutational multivari-
ate analysis of variance (PERMANOVA) by Bray–Curtis similari-
ties after 9999 permutations with post-fire chronosequence, soil 
depth and their interaction as a fixed factor. A pair-wise test is 
performed to test for differences between groups of each fac-
tor and when the main effect is significant (p < 0.05). A distance-
based linear model (DistLM) was used to test the correlation 
between the community or functional structure and the environ-
mental variables (all variables are listed in Table  S1). The PCoA, 
PERMANOVA and DistLM analyses were performed in PRIMER 
7 (Anderson et al., 2008). To determine fungal taxa indicative of 
experimental treatments, we used indicator taxa analysis, which 
is a post-hoc test used to determine which fungal taxa are driving 
differences in community membership and abundance (Dufrêne & 
Legendre, 1997). We calculated and compared the indicator val-
ues (IndVal) among the four forest areas and among the soil layers 
with the multipath function in the indicspecies package (Miquel De 
Caceres, 2016).

 13652435, 2023, 2, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2435.14194 by U

niversity O
f C

alifornia, W
iley O

nline L
ibrary on [13/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  265Functional EcologyZHANG et al.

3  |  RESULTS

3.1  |  Temporal and spatial changes in fungal 
community α-diversity

The fungal species richness in the upper soil layers (0–5 and 
5–10  cm) increased (R2  =  0.305, R2  =  0.373, Tables  S2 and S3) 
throughout the forest succession, and was significantly higher in 
the 48 ypf and control (>100 ypf) areas than in the more recently 
burned area (p < 0.05, ANOVA; Figure 1a,d, Table S2). The fungal 
community diversity and evenness showed a similar pattern in the 
upper soil layers: the 25 ypf and 46 ypf areas had the lowest and 
highest values respectively, whereas the fungal diversity in the 
deep soil layer (10–30 cm) increased throughout the forest succes-
sion (Figure 1, Table S2). In the soil vertical space, the species rich-
ness in 46 ypf and control areas had the same trend of decreasing 
with soil layer.

3.2  |  Temporal and spatial changes in fungal 
community structures

The sequences were assigned to 4019 OTUs after singleton removal 
across the four post-fire chronosequence areas. The shared and 
unique OTUs among the areas showed similar patterns in each of 
the three soil layers respectively (Figure 2). The four post-fire chron-
osequence areas shared 7.4%–10.3% of the total OTUs and the 
unique OTUs in each area increased after fire from 8.0% to 22.0% 
(Figure  2a–c). In addition, the 46 ypf and control areas shared the 
highest number of OTUs in all the three soil layers (0–5, 5–10 and 
10–30 cm) respectively.

The principal coordinates analysis (PCoA) showed that the four 
post-fire chronosequence areas in each soil layer and the three soil 
layers in each post-fire chronosequence area formed distinct fun-
gal community structures, which was confirmed by PERMANOVA 
(p < 0.01, Figure 3a, Table S4). The pair-wise tests showed that in soil 

F I G U R E  1  Fungal community richness (a, d and g), α-diversity (b, e and h) and evenness (c, f and i) in the 0–5 cm, 5–10 cm and 10–30 cm 
soil layer in the four post-fire chronosequence areas. Different letters in the figure represent the significant differences (p < 0.05) in each 
soil layer among the areas by ANOVA with Tukey's HSD multiple range tests. Boxes showing 25–75 percentiles, vertical lines showing the 
standard deviation (n = 9). Abbreviations: ypf, year-post-fire.

 13652435, 2023, 2, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2435.14194 by U

niversity O
f C

alifornia, W
iley O

nline L
ibrary on [13/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



266  |   Functional Ecology ZHANG et al.

vertical space, the 0–5 cm soil layer formed separate communities 
from other soil layers (5–10 cm and 10–30 cm) in each of the post-fire 
chronosequence areas. The three soil layers formed separate com-
munities in the 46 ypf and control areas respectively. However, the 
community structures in 5–10 cm and 10–30 cm soil layer did not 
differ in 3 ypf area.

3.3  |  Temporal and spatial changes in fungal 
community structures at taxonomic level

The indicator taxa analysis at phylum level revealed that Ascomycota 
was identified as indicator species in each of the three soil layers in 
the 3 ypf area (p < 0.05, Table S5). At genus level, in the 0–5 cm soil 
layer, Calyptrozyma, Meliniomyces, Mycenae and Phialocephala were 
indicators in the 3 ypf area. In 5–10 cm soil layer, Calyptrozyma and 
Meliniomyces were identified as indicator genera in the 3 ypf area and 
the control area respectively. In 10–30 cm soil layer, Calyptrozyma 
and Serendipita were identified as indicator genera in the 3 ypf area 
and the control area respectively. At the species level, in the 0–5 cm 
soil layer, Exophiala xenobiotica and Russula suecica were identified 
as indicator species in the 3 ypf area, and Wilcoxina rehmii as an in-
dicator species in the 46 ypf area (Table  S6). In the 10–30 cm soil 
layer, E. xenobiotica, W. rehmii and Meliniomyces variabilis were iden-
tified as indicator species in the 3 ypf, 46 ypf and control areas re-
spectively. In 10–30 cm soil layer, Russula suecica and W. rehmii were 
identified as an indicator species in the 3  ypf and 46 ypf area re-
spectively. Oidiodendron maius and Solicoccozyma terricola were the 
indicator species in the control area. In soil vertical space, in 3 ypf 
area, Meliniomyces was identified as an indicator genus in 0–5  cm 
soil layer. In 25 ypf area, Oidiodendron and Pezoloma were identified 
as indicator genera in 0–5 cm soil layer. In control area, Cortinarius 
and Phialocephala were identified as indicator genera in the 0–5 cm 
and 5–10 cm soil layers respectively. In the 0–5 cm soil layer, O. maius 
was identified as an indicator species in both the 3 ypf and 25 ypf 
areas. M. variabilis and Pezoloma ericae were as indicator species in 
the 25 ypf area. In the 5–10 cm soil layer, Solicoccozyma terricola was 
identified as indicator species in the 25 ypf area. In the 10–30 cm soil 
layer, O. maius was identified as indicator species in the 46 ypf area, 
while E. xenobiotica, R. suecica and S. terricola were used as indicator 
species in the control area. Details of the indicator species are listed 
in Tables S6 and S7.

3.4  |  Temporal and spatial changes in fungal 
functional gene diversity and structure

In total, 4932 gene probes originating from fungi were detected 
from the surface layer (0–5 cm) and deeper layer (10–30 cm) across 
all the areas. These were involved in various metabolic processes, 
including the C, N, P and S cycle, metal homoeostasis, organic reme-
diation, secondary metabolism and stress.

The diversity of functional gene (Shannon index) in each soil 
layer differed between the areas with time since fire. The diversity in 
0–5 cm soil layer increased in 3 ypf and 25 ypf areas and decreased in 
older areas (R2 = 0.478, Tables S2 and S3). In 10–30 cm soil layer, the 
25 ypf area had higher diversity of functional gene than the 3 ypf and 
46 ypf areas respectively (p < 0.05, ANOVA, Figure 4a, Table S2). In 
the soil vertical space, the diversity of functional gene in the 0–5 cm 
soil layer was higher than that in the 10–30 cm soil layer in 3 ypf and 
46 ypf areas respectively; while the diversity of functional gene in 

F I G U R E  2  Venn diagram showing the unique and shared OTUs 
in the 0–5 cm (a), 5–10 cm (b) and 10–30 cm (c) soil layers in the four 
post-fire chronosequence areas. Abbreviations: ypf, year-post-fire.
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0–5 cm soil layer was lower than that in 10–30 cm soil layer in control 
area (Figure 4b, Table S2).

The functional gene expression differed between the 0–5 and 10–
30 cm soil layers in each post-fire chronosequence area and among the 
post-fire chronosequence areas in the same soil layer (Figure S2). In the 
0–5 cm soil layer, the genes of acetyl xylan esterase, exoglucanase, pec-
tate lyase and chitinase of the soil organic matter degradation process 
had a higher gene expression in the 3 ypf areas, and then decreased 
25 ypf and stabilized afterward (Figure 5a). In the 10–30 cm soil layer, 
the gene expression of chitinase, cellobiase, exoglucanase and endo-
glucanase genes for the C cycle process was significantly reduced in 
the 3 ypf areas, followed by a significant increase in the 25 ypf area, 
and then decreased afterward (Figure 5b). The sulfite reductase gene 
involved in sulphite reduction, the sulfate permease gene involved in 
sulphur assimilation and the endopolyphosphatase gene involved in 
polyphosphate degradation showed a similar trend, and the gene ex-
pression were lower in the 3 and 46 ypf areas, and higher in the 25 ypf 
and control areas (Figure 5c,d). The genes of NADP-dependent gluta-
mate dehydrogenase and glutamine synthetase involved in ammonifica-
tion differed in gene expression between the 0–5 and 10–30 cm soil 
layers in the 3 ypf area (Figure 5e).

The PCoA showed that the four post-fire chronosequence areas 
in the same soil layer and the two soil layers in each post-fire chrono-
sequence area (except 25 ypf area) formed distinct functional gene 
expression profiles, which was confirmed by PERMANOVA (p < 0.01, 
Figure 3b, Table S5). The pair-wise tests (Table S5) showed that in 
10–30 cm soil layer, the four post-fire chronosequence areas formed 
four gene expression profiles, but in 0–5  cm soil layer, only three 
gene expression profiles were formed (25 ypf area did not form an in-
dependent profile). In soil vertical space, the two soil layers (0–5 cm 
and 10–30 cm) formed separate gene expression profiles in each of 
the post-fire chronosequence areas, except in the 25 ypf area.

3.5  |  Environmental factors contributing to fungal 
community structures and function

Many environmental parameters were strongly correlated with 
the fungal community structures and functional gene expression 
profiles (Figure 3a,b). DistLM analysis showed the fire history, soil 
depth, tree biomass and soil pH significantly correlated with the fun-
gal community structures, while, the fire history was significantly 

F I G U R E  3  Principal coordinates 
analysis (PCoA) showing the fungal 
community structure (a) and the 
functional gene profile (b) based on 
the Bray–Curtis distances by using 
environmental factors as explanatory 
variables. Colour and symbol codes in the 
figure: blue represents samples of 3-year 
post fire (ypf), green represents samples 
of 25 ypf, purple represents samples of 
46 ypf, and orange represents samples of 
the control; the square points represent 
samples of 0–5 cm soil layer, the circular 
points represent samples from 5 to 
10 cm soil layer, and the triangular points 
represent samples from 10 to 30 cm soil 
layer. Abbreviations: TB, tree biomass; 
GVB, ground vegetation biomass; FB, 
foliage biomass; MBC, MBN and MBP are 
microbial biomass C, N and P contents; 
SAN and SAP are soil available N and P 
contents; FBR, fungal-to-bacterial ratio.

 13652435, 2023, 2, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2435.14194 by U

niversity O
f C

alifornia, W
iley O

nline L
ibrary on [13/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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correlated with the functional gene expression profiles (Table  S8, 
p < 0.05 with DistLM analysis).

4  |  DISCUSSION

Our study demonstrated that the fungal community structures in 
the same soil layer differed between the four post-fire chronose-
quence areas, suggesting that fire not only has a significant effect 

on soil fungal communities in the surface layer, which is consist-
ent with previous studies (Sun et al., 2015), but also in the deeper 
layer. One exception is that in the 0–5 cm soil layer, the functional 
gene profiles in the 25 ypf area was not separated from other post-
fire areas. The lack of separation in functional gene profiles may 
have been due to one plot in this grouping, which varied signifi-
cantly from the others. Both the soil properties and above-ground 
vegetation can influence the soil fungal communities. With the 
forest recovery after fire, the above-ground vegetation becomes 
progressively more diverse, and both the mixing of plant litter and 
the interaction of root exudates may be important factors caus-
ing significant changes in soil physicochemical properties, such as 
pH, which may lead to an altered fungal community and function 
(Glassman et al., 2017; Tian et al., 2021). The soil vertical gradient 
itself is an important determinant of fungal community composition 
and dispersal (Lindahl et al., 2007; Upton et al., 2020). In addition, 
the fire also shifted the fungal community and function in soil verti-
cal gradient as the surface (0–5 cm) and deep (10–30 cm) soil layers 
formed a separate community structure and functional gene profile 
in each post-fire chronosequence area.

The species richness in the upper soil layers (0–5 and 5–10 cm) 
in 46 ypf and control (>100 ypf) areas were similar with no signifi-
cant difference between them, which were significantly higher than 
that in the more recently burned 3 ypf area. The similar result was 
also observed on microbial biomass in the same study areas that is, 
the soil microbial biomass C and nitrogen in the upper soil layers 
did not differ between the 46 ypf and control areas, which signifi-
cantly increased from 3 ypf to 46 ypf areas (Zhou et al., 2019b), sug-
gesting that the fungal communities in soil surface have recovered 
from fire in 46 ypf forests. The fungal species richness decreased 
significantly in the upper soil layer (0–5 and 5–10 cm depth) in the 
recently burned areas, which agrees with previous studies that fire 
reduces the fungal species richness (Dove & Hart, 2017). The rea-
son for these results may be that fire likely eliminates fungal species 
that cannot withstand high temperatures directly (Baar et al., 1999; 
Horton et al.,  1998), or indirectly reduce acid-loving or moisture-
loving fungal community in soil by increasing soil pH and the hy-
drophobicity of soil in the humus layer (DeBano, 2000; O'Donnell 
et al.,  2009) leading to soil drying (Peay et al.,  2009). In addition, 
fires cause a reduction in vegetation and loss of hosts for mycorrhi-
zal fungi (Rashid et al., 1997; Smith et al., 2005), resulting in a decline 
in mycorrhizal fungi. Subsequently, with the recovery of vegetation, 
the fungal diversity and species richness also gradually recover due 
to the increase in forest litter and nutrient input (Bárcenas-Moreno 
& Bååth, 2009).

Indicator taxa analysis is a post-hoc test used to determine 
which microbial taxa are driving differences in community mem-
bership and abundance in each experimental group (treatment; 
Bach et al., 2018). Ascomycota as a differential phylum in each soil 
layer in the 3 ypf area, was identified to be the dominant post-fire 
fungus, meaning they can respond rapidly to the fire, and colo-
nize the areas within a few weeks after the fire and post-fire col-
onization can take up to 2 years after fire (Adamczyk et al., 2012; 

F I G U R E  4  Principal coordinates analysis (PCoA) showing the 
fungal community structure (a) and the functional gene profile (b) 
based on the Bray–Curtis distances by using environmental factors 
as explanatory variables. Colour and symbol codes in the figure: 
blue represents samples of 3-year post fire (ypf), green represents 
samples of 25 ypf, purple represents samples of 46 ypf and orange 
represents samples of the control; the square points represent 
samples of 0–5 cm soil layer, the circular points represent samples 
from 5 to 10 cm soil layer, and the triangular points represent 
samples from 10 to 30 cm soil layer. Abbreviations: TB, tree 
biomass; GVB, ground vegetation biomass; FB, foliage biomass; 
MBC, MBN and MBP are microbial biomass C, N and P contents; 
SAN and SAP are soil available N and P contents; FBR, fungal-to-
bacterial ratio.
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Reazin et al.,  2016). As compared to control areas, Calyptrozyma 
exhibited higher relative abundance in the 3 ypf area. This was 
attributed to the fact that most members in Calyptrozyma have 
higher tolerance to fire, and can survive through living on resid-
ual charcoal that is normally enriched in aromatic hydrocarbons 
(Pérez-Izquierdo et al., 2021). Oidiodendron maius is an ericoid my-
corrhiza and forms associations with the roots of ericoid plants, 
which can improve host plant growth by aiding plant uptake nu-
trient uptake (Douglas & Smith, 1989). Vaccinium vitis-idaea L., V. 
uliginosum L. and Rhododendron groenlandicum Oeder are the com-
mon ericoid shrubs in the studied areas, and they disappeared for a 
while because of fire. With the restoration of plantation after fire, 
O. maius became an indicator species in the deeper soil layer in the 
control area. In addition, E. xenobiotica was an indicator species 
in the upper soil layers (0–5 cm and 5–10 cm) in the 3 ypf area. E. 
xenobiotica, a relatively common group of pathogens, is frequently 
found in habitats rich in monoaromatic hydrocarbons and alkanes 
(De Hoog et al., 2006). It can be enriched as an opportunistic spe-
cies in the early post-disturbance stages when alkanes and aro-
matic compounds are abundant and the entire forest ecosystem is 
unstable after experiencing fire disturbance. Subsequently, as the 
ecosystem stabilizes over a longer period of time after wildfire, the 
relative abundance of this taxon group decreases to a much lower 
level and remains stable.

The genes associated with soil organic matter degradation 
had a higher expression level in the surface soil layer (0–5  cm) 
in the recently burned area (3  ypf) compared with other areas. 
Studies have shown that forest burning introduces large amounts 

of C-rich material to the soil surface as litter from dead trees 
(Harden et al., 1997; Harmon et al., 1990). The increase in C-rich 
material after fire may have favoured the aggregation of fungi and 
thus contribute to the increase in the expression level of genes 
related to cellulose and hemicellulose degradation in the surface 
litter. The death of a large number of fungal mycelium caused by 
fire can also lead to the increase in chitin in the soil (Williams & 
Robinson, 1981), thus, the expression of chitin degradation genes 
was more abundant in the 3 yfp areas (0–5  cm). Compared with 
the surface soil layer, the changes in the expression level of func-
tional genes in deep soil layer (10–30 cm) were more significant. 
The reason might be due to the occurrence of the fire causing the 
deep soil to melt, and the refreezing of the deep soil as the time 
between fires increases, thus causing significant changes in the 
functional genes in the deep soil layer. In the deep soil layer, the 
expression level of genes (cellobiase, endoglucanase, exoglucanase 
and chitinase) involved in the soil organic matter degradation was 
significantly reduced in the recently burned areas (3 ypf) and was 
increased in the 25 ypf areas, which showed a similar pattern as 
the fungal species richness along with the fire history. Fungi in 
deep soils are affected by the root secretions of plants in addi-
tion to the soil physicochemical properties compared to those in 
surface (Baumert et al., 2018). Therefore, we expected that in the 
early post-fire stages, the fungal acquisition of carbonaceous ma-
terial secreted by plant roots decreases due to the reduction of 
vegetation, and as the plants recover, this carbonaceous material 
increases and in turn the degradation of C by fungi is enhanced. 
Apart from this, high fungal mortality in the recently burned areas 

F I G U R E  5  The significantly expressed genes involved in C cycle in the 0–5 cm soil layer (a), C cycle in the 10–30 cm soil layer (b), S cycle 
in the 10–30 cm soil layer (c), P cycle in the 10–30 cm soil layer (d) in the four post-fire chronosequence areas, and N cycle in the 3 ypf site (e) 
in the two soil layers. Abbreviations: ypf, year-post-fire.
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(3 ypf) was also a cause for the reduction of fungi associated with 
organic matter degradation in the deeper layer. Therefore, higher 
expression of organic matter degradation-related genes in sur-
face soils of the early post-fire stages may cause a reduction in C 
storage in surface soils, and conversely, lower expression in their 
deeper layers may bring an increase in C storage.

In conclusion, our study highlighted the long-term and soil verti-
cal spatial effects of fire on soil fungal communities in boreal forest. 
Our findings indicate that fire has long-term impacts on fungal com-
munity composition in surface and near-surface soils, in which the 
fungal richness in surface soils was significantly reduced and may 
take at least 46 years to return to pre-fire levels. The effect of fire 
on fungal diversity was more pronounced in the surface soil layer, 
while that on functional genes was more pronounced in deep soil. In 
addition, changes in soil fungal community composition after fire re-
sulted differences in functional genes, especially those related to or-
ganic matter degradation. The expression of genes associated with C 
degradation was significantly increased in the surface soil in recently 
burned area compared to areas burned long time ago, while the op-
posite was observed in the deep soil, suggesting that the fire affects 
C storage differently along soil depths and along post-fire time. It 
is necessary to construct a framework to study the specific role of 
the soil microbiome in post-fire forest recovery and nutrient cycling 
to better understand the impact of natural disturbances on forests.
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