

Supplementary Materials for

Shifting microbial communities can enhance tree tolerance to changing climates

Cassandra M. Allsup, Isabelle George, Richard A. Lankau

Corresponding author: Richard A. Lankau, lankau@wisc.edu

Science **380**, 835 (2023) DOI: 10.1126/science.adf2027

The PDF file includes:

Material and Methods Figs. S1 to S6 Tables S1 to 16 References

Materials and Methods

To test whether pre-inoculation with microbial communities sourced from areas with different climates affected seedling survival in field conditions, we performed a field transplant experiment in two forest sites (northern Wisconsin, central Illinois) over a four year period (2018-2021). We collected live soil from 6 forested locations in Wisconsin and 6 in Illinois in fall 2017 (Fig 1). Soil was stored at 4°C for 3 months to simulate winter conditions. We procured seeds for 12 native tree species, either through our own field collections or from commercial sources (Table S1). After cold stratification for up to 90 days (dependent on species), we then germinated seedlings from each species in sterilized potting mix. Once germinated, we planted seedlings into 0.5 L Conetainers (Stuewe and Sons, Inc, Tanget, OR, USA) filled with soil from one of the 12 sources and allowed the them to grow for eight weeks in greenhouse conditions prior to transplanting into a field site. To prevent introduction of unknown microbial taxa across political and ecological boundaries, we restricted the experiment such that seedlings planted in our Wisconsin site received one of the six soils sourced from Wisconsin, while seedlings planted in our Illinois site received one of the six soils sourced from Illinois (Fig 1). We chose an eight week period as this has been shown to be sufficient time to develop symbiotic associations with either arbuscular or ectomycorrhizal fungi, along with other microbes (*21*).

At each site, seedlings were planted into three replicated plots per initial soil inoculum. Each plot contained one seedling of each species, all with the same soil inoculum (to prevent spread of inoculated microbes from different sources among transplanted seedlings). For two species (*Acer negundo* and *Quercus rubra*), we planted up to six seedlings per plot that each represented a different seed population – however, for all subsequent analyses these populations were lumped into a generalized species level response. Plots were paired such that half of the seedlings experienced ambient rainfall conditions, while the other half had rainfall reduced (Fig. 1). Each sub-plot measured 1.21 x 3.05 meters and were covered with four 0.61 x 1.21 m transparent plastic sheets. For rainfall reduction plots, the plastic sheets were angled to cause run-off of intercepted rainfall. For ambient rainfall plots, mock shelters were created to account for any non-target effects

of the plastic sheeting, but sheets were installed level with 28 holes (1.27 cm diameter each) in each sheet to allow passage of rainfall through to the experimental seedlings. Shelters were put in place by July of each growing season and removed by October, to allow natural levels of snowfall in each plot. To document the effectiveness of our rainfall reduction treatment, we installed soil moisture probes in three paired ambient and rainfall reduction plots at each site (2 years in the northern site, 3 years in the southern site). In our northern site, the rainfall reduction treatment reduced soil moisture by $28.0\% \pm 0.065\%$ SE on average during the July-September period over the two measured growing seasons (see Table S17). In our southern site, the rainfall reduction treatment reduced soil moisture by $22.3\% \pm 0.06\%$ SE on average during the July-October period over the three measured growing seasons (see Table S17).

Seedlings were planted in two cohorts (2018 and 2019), with independent soil collections from the same 12 sites for each cohort. Seedlings were planted into field sites in July 2018 (cohort 1) and June 2019 (cohort 2). Each experimental plot had 24 predetermined seedling planting locations, with each seedling position a minimum of 20 cm from each other seedling and the edge of a plastic sheet. Seedlings in cohort 2 were planted into the same experimental plots in locations that were never planted or where a seedling from the previous cohort had died (generally from transplant shock or browsing), again ensuring that all seedlings in a plot shared the same microbial inoculation source site. Seedling survival was monitored for three growing seasons (2018-2020 for cohort 1, and 2019-2021 for cohort 2). We checked all seedlings for survival two weeks after planting - any mortality in this two week period was considered potentially a result of transplant shock, and these seedlings were not analyzed further. For the remaining seedlings, survival was checked an additional five times over the next three years – in the fall of year 1, late spring of year 2, fall of year 2, late spring of year 3, and fall of year 3. Once per season, in August, we surveyed all seedlings for signs of mammalian browsing, insect damage, foliar disease symptoms, and wilting and browning of leaves, in an attempt to identify potential causes of mortality. However, given the time between survival surveys, for the vast majority of seedlings it was not possible to assign cause of death. Some of our target species can lose all aboveground tissue and still resprout in later seasons. If a seedling was marked dead but later grew new leaves, our records were corrected. After the third fall survival check for each cohort, any remaining surviving seedlings were harvested. We collected all aboveground tissue and as much belowground tissue as possible without disrupting other target seedlings. Approximately 100 mg of fine root tissue from each collected seedling was stored at -80° C for characterization of root-associated fungal communities.

Statistical analysis: To test whether pre-inoculation with microbes adapted to specific climate conditions could enhance the tolerance seedlings facing those conditions, we analyzed three-year seedling survival rates at each site using generalized linear models which included quantitative measures of climate conditions of the microbial inocula source as predictor variables, along with field rainfall treatment and the interactions between microbial source climate and rainfall treatment. Note that our use of the term tolerance simply refers to greater survival rate under a particular condition, and does not imply any particular physiological, phenological, or ontogenetic mechanism. We considered two aspects of the climate at each soil inocula source: temperature and aridity. To quantify aridity, we used the Aridity Index (AI) calculated over the growing season (May – September) prior to soil sampling. The Aridity Index is the ratio of total precipitation to potential evapotranspiration. This index measures the predicted ratio of moisture inputs to losses; higher values indicate wetter conditions, while lower values indicate increasing drought stress for plants. We estimated potential evapotranspiration using the Hargreave approximation method with the spei package in R, using latitude and month to predict external radiation (*44*).

We considered three ways to represent the temperature of the microbial source site: the mean annual temperature, the minimum temperature, and the maximum temperature, all measured over of the 12 months prior to soil sampling. Mean annual temperature was measured as the daily mean temperature averaged over the twelve months prior to soil sampling. Minimum temperature was measured as the daily minimum temperature averaged over the averaged over the coldest month in the 12-month period prior to soil sampling. Maximum temperature was

measured as the daily maximum temperature averaged over the warmest month in the 12-month period prior to soil sampling. We obtained climate data for each site and year from the PRISM database (45).

We used phylogenetic generalized linear mixed models with three-year survival rates as a binomially distributed dependent variable. We included rainfall treatment, and soil inocula source climate variables as fixed effects, along with the interactions between rainfall treatment and soil inocula source climate variables (aridity and temperature). We included the height of each seedling measured just prior to transplanting in the field as an additional covariate, to control for any growth differences induced during the eight week pre-planting period. We used the pglmm function in the phyr package in R to fit models that included random effects to address two potential sources of non-independence among samples –experimental plots, nested within cohort year, as a grouping variable, and the phylogenetic covariance among seedling species (*46*). We used the V.Phylomaker package in R (*47*) to prune the "GBTOB.extended" phylogeny of vascular plants to our set of 21 total tree species. The "GBTOB.extended" combines mega-trees from (*48*) and (*49*) to cover all families of extant vascular plants. We ran separate models for each of the two field sites.

Prior to modeling, we explored the intercorrelation between our climate variables to ensure models did not include highly co-linear predictors. The three measures of temperature (mean, maximum, and minimum) were reasonably correlated within the six source sites for each experiment (0.46 < r < 0.91, 0.13 > P > 0.00001for WI; 0.71 < r < 0.90, 0.01 > P > 0.00001 for IL). Aridity Index was not substantially correlated with either temperature variable for the Wisconsin sites (r < 0.46, P > 0.13 for all). For the Illinois sites, AI was negatively correlated with minimum temperature (r = -0.64, P = 0.02), but not with mean annual temperature or maximum temperature (r > -0.20, P > 0.49). To avoid collinearity in models, we first compared three alternative models with AIC. Each model followed the structure described above with the AI and one of the three temperature variables. For each experimental site, we chose the model with the lowest AIC value for subsequent analysis and interpretation. For the northern site, this was the model including minimum temperature (AIC = 526.93, versus 531.26 and 533.28 for models including mean and maximum temperature, respectively). For the southern site, this was the model including maximum temperature (AIC = 722.86, versus 724.79 and 722.93 for models including mean and minimum temperature, respectively).

Following statistically significant estimates for the main effects of climate variables or interactions between climate variables and the rainfall treatment, we ran separate models for ambient and rainfall reduced conditions. We additionally tested whether the effects of microbial source climate on seedling survival depended on the mycorrhizal category of the seedling species. Tree species were assigned to arbuscular or ectomycorrhizal types based on (*50*). We ran phylogenetic generalized linear models as described above, but included mycorrhizal type as a fixed variable along with its one- and two-way interactions with rainfall treatment and microbial inocula source climate variables. As before, if the main or interactive effects of mycorrhizal type were significant, we ran separate models for each mycorrhizal type, and for each mycorrhizal type by rainfall treatment combination.

Survival analysis of seedlings. As an alternative means to analyze seedling survival, we used a mixed model Cox regression to analyze survival time for each seedling, using a model structure identical to that described above, except that we used tree seedling genus and species as grouping random effects as phylogenetic error structures were not available in the coxme package in R (*51*). Survival time was determined by the six census dates described above (spring and fall censuses for each of three growing seasons). Cox regression models a constant probability of mortality per unit time, as a function of model parameters, while accounting for censored data for individuals who do not die during the course of the experiment (*52*).

Seedling survival by season. To further investigate when during the three year experiment the effect of microbial inoculum source climate was most pronounced, we used our spring and fall sampling to estimate survival across distinct seasonal periods. Specifically, we calculated the survival of each seedling across five periods – summer 1, winter 1, summer 2, winter 2, and summer 3. A seedling was determined to have survived a summer period if it was alive in both the spring (May or June) sampling and the fall sampling (September or

6

October) of a given year. A seedling was determined to have survived a winter period if it was alive in both the Fall sampling of one year and the Spring sampling of the following year. To test how the microbial inoculum source climate affected seasonal survival, we used the phylogenetic generalized linear modeling structure described above, separately for survival across each of the five distinct season periods. Sample size for each model declines for each progressive seasonal period, as survival probabilities can only be calculated based on seedlings alive at the start of each seasonal period. As before, if we detected statistically significant main or interactive effects of microbial inoculum source climate, we ran separate models for each rainfall condition.

Greenhouse experiment: To confirm the effects of microbial source climate under controlled conditions, we performed a pot experiment in greenhouse conditions over three years in which seedlings were grown with soil microbes from the same 12 sources, in all combinations of ambient and elevated summer temperatures and sufficient vs. restricted watering frequency. To mimic our field experiment, we established separate pot experiments to represent each field site. For the northern WI experiment, we filled 1.6 L Mini-treepots (Stuewe and Sons, Inc, Tangent, OR, USA) with a 50/50% mixture of river sand and sterilized field soil collected from the Kemp Natural Resource Station (KNRS, northern WI site). Pots were then inoculated with 50 mL of live soil from one of the six WI soil sources used in the field experiment. For each soil source, we inoculated four pots for each seedling species. Pots were split into two greenhouse units, one set to the average summer temperature at KNRS (26.1° C day/ 15° C night), and the other set at an elevated temperature (29.4°C day/ 18.3°C night). Within each greenhouse unit, pots were watered every 5 days (sufficient) or 10 days (restricted). Because we manipulated temperature at the scale of greenhouse units, to provide replication we repeated this experiment over three summers, switching the temperature of greenhouse units each time. In each repetition, we grew between 5-10 seedling species, dependent on availability of germinated seedlings, with one pot per species per combination of temperature × watering frequency × microbial inocula source. For each repetition, seedlings grew for 4 months, and then above- and belowground biomass was harvested, dried, and weighed.

We performed a similar experiment reflecting our central IL site, with an identical design with the following exceptions: 1) background soil was taken from the Allerton Park site, mixed 50/50% with river sand, 2) microbial inocula came from the six sites in IL, 3) pots were grown at 29.4°C day/ 18.3°C night vs. 32.2°C day/ 21.1°C night. Seedling species varied by repetition and between the WI and IL experiment to some degree due to seedling availability (see Table S1 for full list).

Statistical Analysis: Our experiments included a diversity of seedling species with highly divergent growth rates and patterns. Therefore, to allow for meaningful comparisons across species, prior to analysis we accounted for species differences by taking the residuals of a linear model that regressed seedling total biomass against categorical predictors for repetition and species, a continuous predictor of initial height at planting, and the interaction of species and initial height. We controlled for initial height because seedlings were germinated in sterilized soil flats prior to planting in the experiment and grew to different sizes in that time due to variation in germination time and intrinsic growth rates. We included the species by initial height interaction to account for differential dependence of final biomass on initial seedling size across species. By taking the residuals of this model, we created a new outcome variable that ranged from positive values (seedling biomass larger than expected for that species in that repetition given its initial size).

We again used phylogenetic generalized linear mixed models (with Gaussian error distribution) to test whether the residual seedling biomass increased when pots were inoculated with microbial communities that matched the temperature or soil moisture conditions in the experiment. While we manipulated greenhouse temperature and watering frequency factorially, we chose to model the four treatment combinations as a single factor with four levels (cool wet, cool dry, hot wet, hot dry) because air temperature and watering frequency combined to determine the soil moisture experienced by the seedlings (highest soil moisture in the cool wet treatment and lowest in the hot dry treatment, see Fig. S1). Our models included this four-level factor along with microbial source AI and maximum temperature, along with their interactions, as fixed effects. We included greenhouse unit ID and experimental repetition as random effects, to account for non-independence of samples sharing the same greenhouse unit and grown in the same year. We included phylogenetic error covariance to account for non-independence among tree species. When the main or interactive effect of a microbial inocula source climate variable was significant, we ran separate models for each treatment combination. Results did not differ when restricting the analysis to only those seedling species that were also present in the field experiments.

If we found evidence that microbial source climate affected seedling growth in either greenhouse experiment, we again tested whether these effects differed between seedlings of contrasting mycorrhizal types. We used similar phylogenetic generalized linear mixed models as described above but including seedling mycorrhizal type and all interactions with temperature and watering frequency treatments and microbial inocula source climate variables. If the main or interactive effects of mycorrhizal type were significant, we ran separate models within each temperature and watering frequency treatment combination, as well as within each mycorrhizal type.

Characterization of fungal communities on soils and roots: We used metabarcoding of the fungal ITS2 gene region to characterize fungal community composition in the bulk soils used as microbial inocula for the field and greenhouse experiment, as well as on the roots of surviving seedlings from the field experiments. Library preparation and sequencing protocols followed (*53*). For bulk soils, 1 g of the soil used to inoculate Conetainers (for field transplanted seedlings) and greenhouse pots was stored at -30°C until DNA extraction. Soil DNA extractions were performed on 1 g of frozen soil using the Omega Bio-tek E.Z.N.A. Soil DNA kit following the manufacturer's protocol. For roots of surviving seedlings, we harvested as much belowground biomass as possible of the seedling from the field plots and froze a representative sample of fine roots from each seedling (~1 g) for later analysis. From this subsample, we extracted DNA from 25 mg of root using the Omega Bio-tek E.Z. 96 Plant DNA kit using the manufacturer's protocol.

The fungal ITS2 region was amplified, and Illumina read primers and adaptors added in a two-step PCR protocol. We used the ITS3-KYO2 (*54*) and ITS4 (*55*) primers with added Nextera read primer sequences for the first reaction. External fusion PCR primers contained a 14-bp overlap to the trailing end of the initial primers followed by either an 8-bp i7 index and P7 flow cell adapter sequence or an 8-bp i5 index, 7-bp spacer, and P5 flow cell adapter (See Lankau and Keymer 2015 for more details).

The first round of PCR amplified the ITS2 marker along with priming regions for the Nextera read primers. PCR was performed in 10 μ l reactions using 0.2 μ L of a hot-start, high fidelity polymerase (Clonetech Prime Star GLX) with 2 μ L of its 5X buffer, 0.8 μ L dNTPs (at 10 nM concentration), 0.25 μ L of each primer (at 10 nM), 0.7 μ g T4 gene 32 protein, and 10 ng of template DNA. Thermal cycling conditions included a 5-minute hot start at 98°C, 35 cycles of denaturing (98°C, 0:30), annealing (50°C, 0:45), and extension (68°C, 1:00) and a final extension of 15 minutes at 68°C. Successful amplification was verified using agarose gel electrophoresis.

The second round of PCR added the P5 and P7 flow cell adapters to prepare the library for sequencing on an Illumina MiSeq, along with an external set of sample barcodes located between the flow cell adaptors and read primers. PCR was performed in 25 μ l reactions using 0.5 μ L of a hot-start, high fidelity polymerase (Clonetech Prime Star GLX, location) with 5 μ L of its 5X buffer, 2 μ L dNTPs (at 10 nM concentration), 1 μ L of each primer (at 10 nM), and 1 μ L of product from the first PCR as template. Amplicons were cleaned with the Omega BioTek E-Z 96 Cycle Pure kit. Purified products were quantified using a Qubit 2.0 fluorometer with the Qubit dsDNA HS assay (Thermo Scientific, Grand Island, NY). Amplicons were pooled at equal concentration and sequenced on an Illumina MiSeq using V3 chemistry using paired-end sequencing (300 cycles).

Sequences were separated by barcode sequences by the University of Wisconsin-Biotechnology center, then filtered for quality and assigned to amplicon sequence variants (ASV's, equivalent to 100% identity operational taxonomic units) using the DADA2 program (56) as implemented in the QIIME2 pipeline. Nonsingleton ASVs were identified to the lowest confident taxonomic level using the naïve Bayesian classifier RDP using the UNITE database for ITS reads (*57*). Since exact sequence variants are not appropriate biological units for fungi (*58*), we agglomerated ASVs to species level based on taxonomic identification. We used the FungalTraits database to assign fungal species to functional groups (*59*). We assigned all fungal species to one of six broad putative categories: AMF, EMF, plant pathogens/endophytes, saprotrophs, other, and unassigned. The "other" category consisted of species assigned to rarer categories (lichenized fungi, animal pathogens, etc.). We made no attempt to separate plant pathogens from other, non-pathogenic plant endophytes because even individual fungal strains can switch between these lifestyles based on plant host and environmental conditions. For species assigned to multiple categories, for analytical purposes we assigned them to a single guild with the following priority (EMF > plant pathogen/endophyte > saprotroph).

We used permutation MANOVA to test whether the initial microbial inocula source had a statistically significant effect on Bray-Curtis dissimilarities among the root fungal communities of surviving seedlings. Because the mycorrhizal type of the seedling (AM or EM) had a very strong effect on fungal composition, we performed this analysis separately for seedlings of each mycorrhizal type in each field site. perMANOVA models included tree genus and rainfall treatment as factors.

Additionally, we tested whether certain summary metrics of the fungal community on surviving seedling roots correlated with the initial microbial source climate variables. We analyzed the Shannon-Weaver diversity, species richness (after rarefaction to a set sequence depth) and relative abundance of three functional guilds (AM fungi, EM fungi, and pathogenic/endophytic fungi), as well as the S-W diversity and rarefied richness of the full fungal community. These metrics were tested against microbial source climate, field rainfall treatments, and their interactions using phylogenetic generalized linear models as described above for seedling outcomes. For AM fungi and EM fungi, models only included samples from seedlings species of the appropriate mycorrhizal type.

We used the fungal community composition data to explore whether the diversity and richness of the full fungal community, or functional guilds, could explain effects on seedling performance. For the field experiments, we used data on fungal communities of surviving seedlings. Since we do not have data on the fungal communities of seedlings that died during the experiment, we instead analyzed the data at the level of the microbial inocula source. For each microbial inocula source (12 total per field site, since each cohort year involved a separate soil collection from each source site), we calculated the average Shannon-Weiner diversity and rarefied richness of 1) the total fungal community among surviving seedlings, 2) either the ectomycorrhizal fungal community (for EM associating seedling species) or the arbuscular mycorrhizal fungal community (for AM associated seedling species), and 3) the pathogenic/endophytic fungal community (all seedlings). We first calculated the diversity index and richness value for each individual surviving seedling. Then, to calculate the average diversity values, we used the least square estimated means of the diversity index or richness value for each microbial inocula source from a linear model that included microbial inocula source as a fixed categorical variable, as well as the rainfall reduction treatment, tree seedling genus and total fungal sequencing depth as fixed covariates and field plot as a random effect. We then used a generalized linear model to calculate the survival probability for seedlings in each microbial inocula source by rainfall reduction treatment and mycorrhizal type. We used the emmeans package in R to extract survival probabilities and standard errors for each microbial inocula source from the GLM. Finally, we regressed the estimated survival probabilities against the averaged fungal diversity/richness metrics for microbial inocula sources, in models including the rainfall reduction treatment and its interaction with diversity/richness metics, as well as separately for each rainfall reduction treatment, using a generalized linear model with a binomial error distribution.

Fig. S1. Monthly weather data at the northern (Kemp Natural Resource Station) and southern (Allerton Park and Recreation Center) experimental sites. Red line = monthly maximum temperature, Black line = monthly mean temperature, Blue line = monthly minimum temperature. The first seedling cohort was planted in June 2018 and surviving seedlings harvested in October 2020. The second seedling cohort was planted in June 2019 and harvested in October 2021.

Fig. S2.

Figure S2. Soil moisture content (as % of field capacity) in experimental pots in the greenhouse experiment. A) soil moisture on day 7 of the 10 day cycle. B) soil moisture on day 10 of the 10 day cycle. For "Wet" treatments, pots were watered on Day 1 and Day 5 of the 10 day cycle. For "Dry" Treatments, pots were watered on Day 1 of the 10 day cycle.

Fig. S3. Heatmap of relative abundance of fungal functional guilds in the roots of surviving seedlings at the northern experimental field site (Kemp Natural Resources Station). Relative abundance measured as the proportion of total fungal sequence reads. Each row represents the fungal community on one surviving seedling. Rows are organized by hierarchical clustering. Vertical color annotations denote microbial source site climate, experimental treatments, or seedling mycorrhizal type.

Fig. S4. Heatmap of relative abundance of the top 20 fungal species in each functional guild in the roots of surviving seedlings at the northern experimental field site (Kemp Natural Resources Station). Relative abundance measured as the proportion of total fungal sequence reads. Each row represents the fungal community on one surviving seedling. Vertical color annotations denote microbial source site climate, experimental treatments, or seedling mycorrhizal type.

Fig. S5. Heatmap of relative abundance of fungal functional guilds in the roots of surviving seedlings at the southern experimental field site (Allerton Park and Recreation Center). Relative abundance measured as the proportion of total fungal sequence reads. Each row represents the fungal community on one surviving seedling. Rows are organized by hierarchical clustering. Vertical color annotations denote microbial source site climate, experimental treatments, or seedling mycorrhizal type.

Fig S5

Fig. S6. Heatmap of relative abundance of the top 20 fungal species in each functional guild in the roots of surviving seedlings at the southern experimental field site (Allerton Park and Recreation Center). Relative abundance measured as the proportion of total fungal sequence reads. Each row represents the fungal community on one surviving seedling. Vertical color annotations denote microbial source site climate, experimental treatments, or seedling mycorrhizal type.

Table S1. Tree species used in field and greenhouse experiments

A. Species range and trait values

		Range Center	Range Center	Mycorrhizal	Drought	Cold
Species	Family	Latitude ¹	Longitude ¹	Type ²	Tolerance ³	Tolerance ⁴
Liquidambar styraciflua	Altingiaceae	33.78	-86.54	AM	2.92	-3.5
Betula alleghaniensis	Betulaceae	44.18	-77.01	EM	3	-18.5
Betula papyrifera	Betulaceae	45.90	-84.90	EM	2.02	-31.7
Carpinus carolina	Betulaceae	36.64	-85.31	EM	2.02	-14.9
Ostrya virginiana	Betulaceae	40.24	-87.47	EM	3.25	-18.5
Catalpa speciosa	Bignoniaceae	38.11	-95.13	AM	4.22	-4.1
Gleditsia triacanthos	Fabaceae	39.09	-92.47	AM	4.98	-10.7
Quercus alba	Fagaceae	38.30	-86.86	EM	3.56	-14.1
Quercus macrocarpa	Fagaceae	43.43	-94.17	EM	3.85	-21.5
Quercus rubra	Fagaceae	41.18	-85.37	EM	2.88	-17.6
Quercus velutina	Fagaceae	38.66	-87.76	EM	3	-10.7
Carya cordiformis	Juglandaceae	39.92	-90.45	EM	4	-15.7
Carya ovata	Juglandaceae	39.83	-89.69	EM	3	-12.2
Tilia americana	Malvaceae	43.36	-89.43	EM	2.88	-18.4
Fraxinus americana	Oleaceae	40.99	-82.71	AM	2.38	-15.8
Prunus serotina	Rosaceae	40.18	-83.55	AM	3.02	-14.8
Prunus virginiana	Rosaceae	44.27	-85.92	AM	2.88	NA
Acer negundo	Sapindaceae	42.19	-92.30	AM	3.03	-23
Acer saccharinum	Sapindaceae	40.82	-89.89	AM	2.88	-16.9
Acer saccharum	Sapindaceae	41.85	-83.27	AM	2.25	-18.3
Ulmus americana	Ulmaceae	40.75	-90.44	AM	2.92	-22.2

1. USFS Climate Change Tree Atlas

2. B. Wang, Y. L. Qiu, Phylogenetic distribution and evolution of mycorrhizas in land plants. *Mycorrhiza* **16**, 299-363 (2006).

3. B. A. Hawkins, M. Rueda, T. F. Rangel, R. Field, J. A. F. Diniz-Filho, Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests. *J. Biogeogr.* **41**, 23-38 (2014).

4. U. Niinemets, F. Valladares, Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. *Ecological Monographs* **76**, 521-547 (2006).

Table S1B. Species use across experiments

	Northern	Northern Site					Southern Site			
	Field Expe	eriment	Greenh	ouse Exp	eriment	Field Expe	eriment	Greenh	ouse Exp	eriment
Species	2018	2019	2018	2019	2020	2018	2019	2018	2019	2020
Liquidambar styraciflua					24					23
Betula alleghaniensis		15					7			
Betula papyrifera			17	7				15		
Carpinus carolina										15
Ostrya virginiana			15					18		
Catalpa speciosa		27		21	24		21		19	24
Gleditsia triacanthos		39					32			23
Quercus alba	5		4		12	11				16
Quercus macrocarpa	10	18	19	23	18	22		21	24	16
Quercus rubra	70	36	10	19	21	100	15	21	21	22
Quercus velutina	6	25	16	23		13		15	18	
Carya cordiformis	9	20	16	15		23		13	23	
Carya ovata	9	14	15	15		23		19	17	
Tilia americana		27		21	6		23		17	11
Fraxinus americana					24					23
Prunus serotina					22					
Prunus virgiana			15					20		
Acer negundo	168	32	23	22		183	17	23	16	
Acer saccharinum					24					
Acer saccharum	14		7			9		3		
Ulmus americana	16	24	22	22		19	23	24	19	

*Values in cells indicate that the final analyzable sample size of each species in each experimental cohort (after accounting for loss due to transplant shock, etc.).

Table S2. Statistical results of phylogenetic generalized linear mixed models and mixed effect Cox regression models for seedling survival at the northern field site (Kemp Natural Resource Station, Wisconsin, USA)

Three Year Survival (Phylogenetic GLM					Survival Ana	lysis (Co	<pre>k Regress</pre>	sion)
				Wald				Wald
A. Full Experiment	Estimate	SE	Z	test P	Estimate	SE	Z	test P
Intercept	-1.518	0.401	-3.787	0.000				
Rainfall Treatment	-0.043	0.245	-0.175	0.861	0.083	0.074	1.130	0.260
Microbial Source Minimum	-0.495	0.202	-2.454	0.014	0.227	0.113	2.010	0.044
Temperature								
Microbial Source Aridity Index	0.090	0.173	0.519	0.604	-0.021	0.085	-0.250	0.800
Initial Seedling Height	-0.329	0.162	-2.035	0.042	-0.071	0.054	-1.310	0.190
Rainfall Trt*Minimum Temperature	0.497	0.225	2.211	0.027	-0.105	0.074	-1.420	0.160
Rainfall Trt*Aridity Index	-0.172	0.212	-0.836	0.403	-0.022	0.073	-0.300	0.760
B. Ambient Rainfall								
Intercept	-1.540	0.379	-4.065	0.000				
Microbial Source Minimum	-0.456	0.211	-2.156	0.031	0.203	0.123	1.650	0.099
Temperature								
Microbial Source Aridity Index	0.092	0.172	0.535	0.593	-0.018	0.088	-0.200	0.840
Initial Seedling Height	-0.493	0.211	-2.337	0.019	-0.025	0.075	-0.340	0.740
C. Reduced Rainfall								
Intercept	-1.527	0.488	-3.128	0.002				
Microbial Source Minimum	-0.051	0.229	-0.222	0.824	0.143	0.117	1.220	0.220
Temperature								
Microbial Source Aridity Index	-0.070	0.206	-0.341	0.733	-0.054	0.091	-0.600	0.550
Initial Seedling Height	-0.107	0.239	-0.447	0.655	-0.129	0.076	-1.690	0.090

*Bold text, P<0.05.

Results for fixed effects shown. Models also included crossed random effects of plot (nested within seedling cohort) and phylogenetic covariance among seedling species for generalized linear models or seedling species (nested within genus) for Cox regression. DF = 585 (A), 300 (B), 285 (C)

Table S3. Statistical results of phylogenetic generalized linear mixed models for seedling survival by mycorrhizal type at the northern field site (Kemp Natural Resource Station, Wisconsin, USA)

				Wald
A. Full Experiment	Estimate	SE	Z	test P
Intercept	-1.393	0.534	-2.607	0.009
Mycorrhizal Type	-0.296	0.760	-0.390	0.696
Rainfall Treatment	0.076	0.305	0.249	0.803
Microbial Source Minimum Temperature	-0.496	0.260	-1.911	0.056
Microbial Source Aridity Index	0.118	0.218	0.542	0.588
Initial Seedling Height	-0.332	0.170	-1.949	0.051
Myc Type*Rainfall Trt	-0.289	0.537	-0.537	0.591
Myc Type*Minimum Temperature	0.011	0.350	0.032	0.974
Myc Type*Aridity Index	-0.060	0.302	-0.199	0.842
Rainfall Trt*Minimum Temperature	0.255	0.296	0.863	0.388
Rainfall Trt*Aridity Index	-0.014	0.264	-0.054	0.957
Myc Type*Rainfall Trt*Minimum Temperature	0.673	0.480	1.400	0.161
Myc Type*Rainfall Trt*Aridity Index	-0.701	0.496	-1.412	0.158
B. Ambient Rainfall				
Intercept	-1.282	0.463	-2.770	0.006
Mycorrhizal Type	-0.680	0.676	-1.007	0.314
Microbial Source Minimum Temperature	-0.433	0.273	-1.587	0.113
Microbial Source Aridity Index	0.066	0.216	0.308	0.758
Initial Seedling Height	-0.561	0.230	-2.437	0.015
Myc Type*Minimum Temperature	-0.063	0.357	-0.176	0.861
Myc Type*Aridity Index	0.043	0.290	0.149	0.882
C. Reduced Rainfall				
Intercept	-1.415	0.665	-2.128	0.033
Mycorrhizal Type	-0.334	0.942	-0.355	0.723
Microbial Source Minimum Temperature	-0.280	0.276	-1.017	0.309

Microbial Source Aridity Index	0.138	0.237	0.585	0.559
Initial Seedling Height	-0.097	0.255	-0.382	0.702
Myc Type*Minimum Temperature	0.670	0.387	1.732	0.083
Myc Type*Aridity Index	-0.775	0.421	-1.839	0.066
D. Ectomycorrhizal - Ambient Rainfall				
Intercept	-1.664	0.620	-2.686	0.007
Microbial Source Minimum Temperature	-0.519	0.303	-1.714	0.086
Microbial Source Aridity Index	0.091	0.251	0.361	0.718
Initial Seedling Height	-0.305	0.311	-0.981	0.327
E. Ectomycorrhizal - Reduced Rainfall				
Intercept	-1.719	1.003	-1.714	0.087
Microbial Source Minimum Temperature	0.540	0.332	1.626	0.104
Microbial Source Aridity Index	-0.543	0.334	-1.629	0.103
Initial Seedling Height	-0.280	0.453	-0.618	0.537
F. Arbuscular mycorrhizal - Ambient Rainfall				
Intercept	-1.589	0.248	-6.416	0.000
Microbial Source Minimum Temperature	-0.358	0.236	-1.518	0.129
Microbial Source Aridity Index	0.046	0.195	0.235	0.815
Initial Seedling Height	-0.602	0.263	-2.291	0.022
G. Arbuscular mycorrhizal - Reduced Rainfall				
Intercept	-1.414	0.235	-6.022	0.000
Microbial Source Minimum Temperature	-0.295	0.235	-1.256	0.209
Microbial Source Aridity Index	0.117	0.210	0.555	0.579
Initial Seedling Height	-0.142	0.245	-0.579	0.563

,

*Bold text, P<0.05. Italicized text, P < 0.10. Results for fixed effects shown. Models also included crossed random effects of tree seedling species (nested within genus) and plot (nested within seedling cohort). DF = 585 (A), 300 (B), 285 (C), 135 (D), 130 (E), 165 (F), 155 (G)

Table S4. Statistical results of phylogenetic generalized linear mixed models for seedling survival in each season at the northern field site (Kemp Natural Resource Station, Wisconsin, USA)

	Summe	r 1	Winter 1		Summe	Summer 2		Winter 2		Summer 3	
A. Full Experiment	N = 585		N = 416		N = 238	5	N = 150		N = 126		
		Wald		Wald		Wald		Wald		Wald	
	Est	test P	Est	test P	Est	test P	Est	test P	Est	test P	
Intercept	1.46	0.000	0.75	0.036	0.52	0.134	1.36	0.009	2.33	0.000	
Rainfall Treatment	-0.28	0.217	-0.09	0.705	0.42	0.182	0.20	0.692	-0.72	0.250	
Microbial Source Minimum Temp	0.49	0.023	-1.00	0.000	-0.20	0.425	-0.37	0.294	-0.25	0.642	
Microbial Source Aridity Index	-0.29	0.101	0.83	0.011	0.02	0.920	0.10	0.724	-0.56	0.088	
Initial Seedling Height	0.20	0.165	0.00	0.988	-0.49	0.012	-0.46	0.155	-0.56	0.058	
Rainfall Trt*Minimum Temp	-0.06	0.753	0.16	0.557	0.66	0.025	0.44	0.355	0.12	0.836	
Rainfall Trt*Aridity Index	0.21	0.202	-0.67	0.045	-0.30	0.259	-0.50	0.227	1.05	0.095	
B. Ambient Rainfall	N = 300		N = 221		N = 128		N = 78		N = 66		
Intercept	1.45	0.000	0.54	0.788	0.45	0.186	1.92	0.003	2.08	0.000	
Microbial Source Minimum Temp	0.44	0.064	-1.00	0.000	-0.22	0.382	-0.25	0.564	0.00	1.000	
Microbial Source Aridity Index	-0.26	0.166	0.72	0.011	0.05	0.782	0.00	1.000	-0.72	0.042	
Initial Seedling Height	0.46	0.025	-0.06	0.773	-0.56	0.029	-0.10	0.043	-0.90	0.078	
C. Reduced Rainfall	N = 285		N = 195		N = 110		N = 72		N = 60		
Intercept	1.13	0.004	0.82	0.037	0.87	0.035	1.67	0.003	1.49	0.001	
Microbial Source Minimum Temp	0.46	0.031	-0.70	0.019	0.38	0.236	-0.10	0.825	-0.18	0.580	
Microbial Source Aridity Index	-0.09	0.629	0.18	0.498	-0.34	0.235	-0.42	0.264	0.50	0.308	
Initial Seedling Height	0.02	0.916	0.11	0.648	-0.32	0.274	0.25	0.640	-0.20	0.571	

*Bold text, P<0.05. Italicized text, P<0.10.

Results for fixed effects shown. Models also included crossed random effects of plot (nested within seedling cohort) and phylogenetic covariance among seedling species

Table S5. Statistical results of phylogenetic generalized linear mixed models and mixed effect Cox regression models for seedling survival at the southern field site (Allerton Park and Retreat Center, Illinois, USA)

		Survival A	Analysis (Cox Regre
				Wald
A. Full Experiment	Estimate	SE	Z	test P
Intercept	0.181	0.364	0.498	0.618
Rainfall Treatment	-0.206	0.185	-1.110	0.267
Microbial Source Maximum Temperature	0.277	0.158	1.757	0.079
Microbial Source Aridity Index	-0.080	0.163	-0.489	0.625
Initial Seedling Height	0.234	0.128	1.835	0.067
Rainfall Trt*Maximum Temperature	-0.290	0.190	-1.528	0.126
Rainfall Trt*Aridity Index	-0.435	0.198	-2.192	-0.028
B. Ambient Rainfall				
Intercept	-0.011	0.387	-0.027	0.978
Microbial Source Maximum Temperature	0.252	0.150	1.681	0.093
Microbial Source Aridity Index	0.012	0.164	0.076	0.940
Initial Seedling Height	0.248	0.171	1.447	0.148
C. Reduced Rainfall				
Intercept	0.027	0.380	0.097	0.923
Microbial Source Maximum Temperature	0.010	0.174	0.060	0.952
Microbial Source Aridity Index	-0.634	0.202	-3.142	0.002
Initial Seedling Height	0.195	0.185	1.054	0.292

*Bold text, P<0.05. Italicized text, P < 0.10.

Results for fixed effects shown. Models also included crossed random effects of plot (nested within seedling cohort) and phylogenetic covariance among seedling species for generalized linear models or seedling species (nested within genus) for Cox regression. DF = 542 (A), 269 (B), 273 (C)

Table S6. Statistical results of phylogenetic generalized linear mixed models for seedling survival by mycorrhizal type at the southern field site (Allerton Park and Retreat Center, Illinois, USA)

				Wald
A. Full Experiment	Estimate	SE	Z	test P
Intercept	0.499	0.571	0.874	0.382
Mycorrhizal Type	-0.631	0.779	-0.810	0.418
Rainfall Treatment	-0.130	0.256	-0.509	0.611
Microbial Source Maximum Temperature	0.485	0.210	2.316	0.021
Microbial Source Aridity Index	-0.466	0.230	-2.021	0.043
Initial Seedling Height	0.209	0.134	1.564	0.118
Myc Type*Rainfall Trt	-0.271	0.385	-0.703	0.482
Myc Type*Maximum Temperature	-0.553	0.287	-1.928	0.054
Myc Type*Aridity Index	0.915	0.312	2.934	0.003
Rainfall Trt*Maximum Temperature	-0.685	0.256	-2.672	0.008
Rainfall Trt*Aridity Index	-0.525	0.294	-1.784	0.074
Myc Type*Rainfall Trt*Maximum Temperature	1.013	0.401	2.527	0.012
Myc Type*Rainfall Trt*Aridity Index	0.175	0.420	0.416	0.677
B. Ambient Rainfall				
Intercept	0.239	0.569	0.420	0.675
Mycorrhizal Type	-0.502	0.788	-0.638	0.524
Microbial Source Maximum Temperature	0.449	0.195	2.305	0.021
Microbial Source Aridity Index	-0.311	0.232	-1.337	0.181
Initial Seedling Height	0.193	0.180	1.073	0.283
Myc Type*Maximum Temperature	-0.518	0.282	-1.837	0.066
Myc Type*Aridity Index	0.719	0.320	2.247	0.025
C. Reduced Rainfall				
Intercept	0.476	0.595	0.800	0.424
Mycorrhizal Type	-0.750	0.802	-0.935	0.350
Microbial Source Maximum Temperature	-0.155	0.227	-0.682	0.495
Microbial Source Aridity Index	-1.165	0.299	-3.892	0.000
Initial Seedling Height	0.207	0.195	1.067	0.286
Myc Type*Maximum Temperature	0.400	0.298	1.343	0.179
Myc Type*Aridity Index	1.193	0.387	3.081	0.002
D. Ectomycorrhizal - Ambient Rainfall				
Intercept	-0.652	0.947	-0.689	0.491
Microbial Source Maximum Temperature	-0.110	0.224	-0.491	0.623
Microbial Source Aridity Index	0.503	0.252	1.997	0.046
Initial Seedling Height	0.099	0.227	0.435	0.664
E. Ectomycorrhizal - Reduced Rainfall				

Intercept	-0.372	0.373	-0.998	0.319
Microbial Source Maximum Temperature	0.242	0.228	1.060	0.289
Microbial Source Aridity Index	-0.166	0.260	-0.640	0.522
Initial Seedling Height	-0.133	0.233	-0.570	0.569
F. Arbuscular mycorrhizal - Ambient Rainfall				
Intercept	0.265	0.180	1.470	0.142
Microbial Source Maximum Temperature	0.499	0.191	2.619	0.009
Microbial Source Aridity Index	-0.393	0.208	-1.890	0.059
Initial Seedling Height	0.162	0.203	0.799	0.425
G. Arbuscular mycorrhizal - Reduced Rainfall				
Intercept	0.803	0.792	1.014	0.311
Microbial Source Maximum Temperature	-0.223	0.267	-0.833	0.405
Microbial Source Aridity Index	-1.251	0.347	-3.604	0.000
Initial Seedling Height	0.624	0.284	2.196	0.028

*Bold text, P<0.05. Italicized text, P < 0.10. Results for fixed effects shown. Models also included crossed random effects of tree seedling species (nested within genus) and plot (nested within seedling cohort). DF = 542 (A), 269 (B), 273 (C), 119 (D), 119 (E), 150 (F), 154 (G)

Table S7. Statistical results of phylogenetic generalized linear mixed models for seedling survival in each season at the southern field site (Allerton Park and Retreat Center, Illinois, USA)

	Summe	er 1	Winter	1	Summer 2		Winter 2		Summer 3	
A. Full Experiment	N = 542	2	N = 454	1	N = 348	N = 348		1	N = 281	
		Wald								
		test		Wald		Wald		Wald		Wald
	Est	Р	Est	test P	Est	test P	Est	test P	Est	test P
Intercept	2.23	0.000	1.26	0.000	2.31	0.000	2.66	0.000	2.65	0.000
Rainfall Treatment	-0.35	0.149	0.10	0.659	0.13	0.758	-0.49	0.234	-0.54	0.226
Microbial Source Maximum Temp	-0.04	0.828	-0.01	0.972	0.48	0.101	0.47	0.121	0.68	0.082
Microbial Source Aridity Index	-0.30	0.123	0.21	0.322	0.17	0.536	-0.34	0.202	-0.06	0.873
Initial Seedling Height	0.33	0.036	0.17	0.295	0.29	0.171	0.14	0.598	-0.08	0.724
Rainfall Trt*Maximum	0.04	0.874	0.09	0.702	-0.76	0.049	-0.59	0.136	-0.61	0.189
Temperature										
Rainfall Trt*Aridity Index	0.06	0.773	-0.13	0.619	-0.84	0.014	-0.13	0.710	-0.29	0.495
B. Ambient Rainfall	N = 269	Ð	N = 231		N = 159		N = 175		N = 145	
Intercept	2.11	0.000	1.18	0.003	2.38	0.000	2.93	0.000	2.62	0.000
Microbial Source Maximum Temp	-0.06	0.801	-0.06	0.742	0.50	0.110	0.53	0.088	0.64	0.108
Microbial Source Aridity Index	-0.21	0.323	0.24	0.262	0.20	0.493	-0.45	0.132	-0.07	0.844
Initial Seedling Height	0.39	0.085	0.10	0.633	0.41	0.160	0.21	0.603	-0.06	0.851
C. Reduced Rainfall	N = 273	3	N = 223	3	N = 155	5	N = 16	3	N = 136	5
Intercept	1.94	0.000	1.33	0.000	2.51	0.000	1.90	0.000	2.11	0.000
Microbial Source Maximum Temp	0.01	0.966	0.11	0.570	-0.25	0.350	-0.02	0.930	0.09	0.797
Microbial Source Aridity Index	-0.28	0.151	0.02	0.932	-0.75	0.003	-0.48	0.074	-0.44	0.198
Initial Seedling Height	0.29	0.172	0.24	0.316	0.20	0.560	-0.01	0.965	-0.17	0.566

*Bold text, P<0.05. Italicized text, P < 0.10.

Results for fixed effects shown. Models also included crossed random effects of plot (nested within seedling cohort) and phylogenetic covariance among seedling species

Table S8. Statistical results of phylogenetic linear mixed models for seedling biomass in greenhouse experiment using background soil from the northern field site (Kemp Natural Resource Station, Wisconsin, USA)

A) Full Experiment	Estimate	SE	Z	Р
(Intercept)	1.199	4.757	0.252	0.801
Microbial Source Aridity Index	0.356	0.188	1.890	0.059
Microbial Source Minimum Temperature	-0.280	0.202	-1.387	0.166
Treatment Cool-Dry	-1.141	0.249	-4.579	<0.0001
Treatment Warm-Wet	-1.417	0.273	-5.193	<0.0001
Treatment Warm-Dry	-2.554	0.284	-9.009	< 0.0001
Treatment Cool-Dry * MS Aridity Index	-0.446	0.254	-1.758	0.079
Treatment Warm-Wet * MS Aridity Index	-0.294	0.283	-1.039	0.299
Treatment Warm-Dry * MS Aridity Index	-0.304	0.283	-1.077	0.281
Treatment Cool-Dry * MS Minimum Temperature	0.100	0.251	0.399	0.690
Treatment Warm-Wet * MS Minimum Temperature	0.287	0.324	0.886	0.376
Treatment Warm-Dry * MS Minimum Temperature	0.575	0.327	1.760	0.078
B) Cool-Wet Treatment				
(Intercept)	0.967	0.456	2.120	0.034
Microbial Source Aridity Index	0.322	0.233	1.383	0.167
Microbial Source Minimum Temperature	-0.193	0.274	-0.705	0.481
C) Cool-Dry Treatment				
(Intercept)	-0.110	0.238	-0.463	0.643
Microbial Source Aridity Index	-0.252	0.160	-1.577	0.115
Microbial Source Minimum Temperature	0.073	0.179	0.406	0.685
D) Warm-Wet Treatment				
(Intercept)	0.024	0.457	0.052	0.958
Microbial Source Aridity Index	0.053	0.191	0.275	0.783
Microbial Source Minimum Temperature	0.032	0.231	0.137	0.891
E) Warm-Dry				
(Intercept)	-1.095	0.468	-2.339	0.019
Microbial Source Aridity Index	0.149	0.175	0.851	0.395
Microbial Source Minimum Temperature	0.123	0.201	0.612	0.541

*Bold text, P<0.05. Italicized text, P < 0.10. Results for fixed effects shown. Results for fixed effects shown. Models also included crossed random effects of experimental year (nested within greenhouse ID) and phylogenetic covariance among seedling species. DF = 542 (A), 150 (B), 141 (C), 132 (D), 119 (E).

Table S9. Statistical results of phylogenetic linear mixed models for seedling biomass in greenhouse experiment using background soil from the southern field site (Allerton Park and Retreat Center, Illinois, USA)

Г

A) Full Experiment	Estimate	SE	Z	Р
(Intercept)	1.592	1.955	0.814	0.415
Microbial Source Aridity Index	0.158	0.223	0.710	0.478
Microbial Source Maximum Temperature	0.454	0.194	2.340	0.019
Treatment Cool-Dry	-1.985	0.257	-7.725	0.000
Treatment Warm-Wet	-1.448	2.764	-0.524	0.600
Treatment Warm-Dry	-3.166	2.765	-1.145	0.252
Treatment Cool-Dry * MS Aridity Index	-0.386	0.271	-1.425	0.154
Treatment Warm-Wet * MS Aridity Index	-0.448	0.310	-1.446	0.148
Treatment Warm-Dry * MS Aridity Index	-0.771	0.312	-2.473	0.013
Treatment Cool-Dry * MS Maximum Temperature	-0.524	0.270	-1.944	0.052
Treatment Warm-Wet * MS Maximum Temperature	-0.589	0.270	-2.186	0.029
Treatment Warm-Dry * MS Maximum Temperature	-0.818	0.276	-2.966	0.003
B) Cool-Wet Treatment				
(Intercept)	1.580	0.662	2.387	0.017
Microbial Source Aridity Index	0.196	0.286	0.686	0.493
Microbial Source Maximum Temperature	0.369	0.237	1.557	0.119
C) Cool-Dry Treatment				
(Intercept)	-0.324	0.407	-0.795	0.427
Microbial Source Aridity Index	-0.165	0.211	-0.780	0.435
Microbial Source Maximum Temperature	-0.053	0.180	-0.294	0.769
D) Warm-Wet Treatment				
(Intercept)	0.217	0.205	1.057	0.290
Microbial Source Aridity Index	-0.278	0.179	-1.547	0.122
Microbial Source Maximum Temperature	-0.139	0.178	-0.781	0.435
E) Warm-Dry				
(Intercept)	-1.533	0.476	-3.223	0.001
Microbial Source Aridity Index	-0.502	0.140	-3.592	0.000
۔ Microbial Source Maximum Temperature	-0.222	0.119	-1.860	0.063

*Bold text, P<0.05. Italicized text, P < 0.10. Results for fixed effects shown. Results for fixed effects shown. Models also included crossed random effects of experimental year (nested within greenhouse ID) and phylogenetic covariance among seedling species. DF = 544 (A), 135 (B), 136 (C), 141 (D), 132 (E).

A) Full Experiment	Estimate	SE	t	Р
(Intercept)	2.28	0.32	7.03	<0.001
Microbial Source Aridity Index	0.05	0.31	0.18	0.861
Microbial Source Maximum Temperature	0.75	0.31	2.41	0.016
Treatment Cool-Dry	-3.11	0.40	-7.76	<0.001
Treatment Warm-Wet	-1.78	0.46	-3.88	<0.001
Treatment Warm-Dry	-4.43	0.46	-9.56	<0.001
Mycorrhizal Type (EM)	-1.07	0.36	-2.93	0.003
Treatment Cool-Dry * Aridity Index	-0.29	0.43	-0.67	0.501
Treatment Warm-Wet * Aridity Index	-0.47	0.43	-1.08	0.281
Treatment Warm-Dry * Aridity Index	-1.13	0.44	-2.59	0.010
Treatment Cool-Dry * Maximum Temperature	-0.84	0.45	-1.85	0.065
Treatment Warm-Wet * Maximum Temperature	-0.81	0.45	-1.81	0.070
Treatment Warm-Dry * Maximum Temperature	-1.13	0.45	-2.49	0.013
Myc Type * Aridity Index	0.32	0.39	0.84	0.402
Myc Type * Maximum Temperature	-0.42	0.39	-1.09	0.277
Treatment Cool-Dry * Myc Type	1.91	0.52	3.68	<0.001
Treatment Warm-Wet * Myc Type	0.50	0.51	0.97	0.333
Treatment Warm-Dry * Myc Type	2.03	0.52	3.90	<0.001
Treatment Cool-Dry * Myc Type * Aridity Index	-0.07	0.55	-0.12	0.904
Treatment Warm-Wet * Myc Type * Aridity Index	-0.12	0.54	-0.23	0.819
Treatment Warm-Dry * Myc Type * Aridity Index	0.46	0.55	0.84	0.398
Treatment Cool-Dry * Myc Type * Maximum Temperature	0.57	0.56	1.01	0.310
Treatment Warm-Wet * Myc Type * Maximum Temperature	0.29	0.55	0.53	0.593
Treatment Warm-Dry * Myc Type * Maximum Temperature	0.53	0.56	0.95	0.341
B) Ectomycorrhizal Cool-Wet Treatment				
(Intercept)	1.19	0.28	4.23	<0.001
Microbial Source Aridity Index	0.49	0.30	1.66	0.097
Microbial Source Maximum Temperature	0.39	0.30	1.31	0.189
C) Ectomycorrhizal Cool-Dry Treatment				
(Intercept)	0.11	0.48	0.22	0.823
Microbial Source Aridity Index	-0.23	0.29	-0.79	0.432
Microbial Source Maximum Temperature	-0.05	0.24	-0.21	0.832
D) Ectomycorrhizal Warm-Wet Treatment				
(Intercept)	-0.04	0.23	-0.17	0.866
Microbial Source Aridity Index	-0.21	0.25	-0.82	0.411
Microbial Source Maximum Temperature	-0.20	0.25	-0.79	0.432

Table S10. Statistical results of phylogenetic generalized linear mixed models for seedling biomass in greenhouse experiment using background soil from the southern field site (Allerton Park and Retreat Center, Illinois, USA), accounting for mycorrhizal type of the seedling species.

E) Ectomycorrhizal Warm-Dry				
(Intercept)	-1.05	0.33	-3.17	0.002
Microbial Source Aridity Index	-0.34	0.16	-2.15	0.031
Microbial Source Maximum Temperature	-0.25	0.14	-1.76	0.079
F) Arbuscular Mycorrhizal Cool-Wet Treatment				
(Intercept)	1.61	1.47	1.10	0.272
Microbial Source Aridity Index	-0.13	0.39	-0.33	0.741
Microbial Source Maximum Temperature	0.33	0.33	1.01	0.315
G) Arbuscular Mycorrhizal Cool-Dry Treatment				
(Intercept)	-0.72	0.36	-2.00	0.045
Microbial Source Aridity Index	-0.07	0.28	-0.25	0.802
Microbial Source Maximum Temperature	-0.04	0.27	-0.13	0.893
H) Arbuscular Mycorrhizal Warm-Wet Treatment				
(Intercept)	0.53	0.44	1.18	0.236
Microbial Source Aridity Index	-0.65	0.24	-2.72	0.006
Microbial Source Maximum Temperature	-0.17	0.22	-0.74	0.458
I) Arbuscular Mycorrhizal Warm-Dry				
(Intercept)	-1.64	1.40	-1.18	0.240
Microbial Source Aridity Index	-0.62	0.20	-3.12	0.002
Microbial Source Maximum Temperature	-0.08	0.16	-0.50	0.615

*Bold text, P<0.05. Italicized text, P < 0.10. Results for fixed effects shown. Results for fixed effects shown. Models also included crossed random effects of experimental year (nested within greenhouse ID) and phylogenetic covariance among seedling species. DF = 544 (A), 80 (B), 82 (C), 85 (D), 79 (E), 55 (F), 56 (G), 53 (H), 54 (I)

Table S11. Statistical results of a permutation MANOVA testing differences in root-associate fungal community composition in survival seedlings at the northern (Kemp NRS) and southern (Allerton PRC) sites for both arbuscular (AM) and ectomycorrhizal (EM) seedlings.

	Mycorrhizal					
Field Site	Туре	Term	Df	PsuedoF	R ²	Р
Kemp NRS	AM	Tree Genus	3	2.626	0.09944	0.001
		Rainfall Treatment	1	1.2462	0.01573	0.119
		Microbial Inocula Source	11	1.9183	0.26635	0.001
		Residuals	49		0.61849	
		Total	64		1	
Kemp NRS	EM	Tree Genus	3	1.19169	0.08425	0.116
		Rainfall Treatment	1	0.93773	0.0221	0.566
		Microbial Inocula Source	9	1.21349	0.25737	0.024
		Residuals	27		0.63628	
		Total	40		1	
Allerton						
PRC	AM	Tree Genus	3	3.4903	0.0693	0.001
		Rainfall Treatment	1	1.1618	0.00769	0.228
		Microbial Inocula Source	10	1.4464	0.09573	0.001
		Residuals	125		0.82728	
		Total	139		1	
Allerton						
PRC	EM	Tree Genus	2	1.2854	0.04045	0.042
		Rainfall Treatment	1	1.365	0.02148	0.054
		Microbial Inocula Source	10	1.3617	0.21427	0.001
		Residuals	46		0.7238	
		Total	59		1	

Table S12. Linear models of fungal Shannon-Weaver diversity and richness in the bulk soils used as experimental inocula, versus the climate of the microbial source site.

A. Northern Inocula Set

Fungal									
Guild	Term	Diversity				Richness			
		Estimate	SE	Z	Р	Estimate	SE	Z	Р
Arbuscular	Intercept	-0.17	1.31	-0.13	0.897	1.19	5.57	0.21	0.834
Mycorrhizal	Sequencing Depth	0.00	0.00	2.82	0.016	0.00	0.00	3.12	0.009
	Microbial Source Aridity Index	1.38	1.19	1.16	0.268	4.83	5.05	0.96	0.358
	Microbial Source Minimum Temperature	0.07	0.05	1.32	0.212	0.46	0.23	1.99	0.070
Ecto-	Intercept	1.41	1.03	1.36	0.198	23.57	19.27	1.22	0.245
mycorrhizal	Sequencing Depth	0.00	0.00	1.77	0.103	0.00	0.00	0.85	0.410
	Microbial Source Aridity Index	1.30	0.94	1.39	0.190	0.63	17.46	0.04	0.972
	Microbial Source Minimum Temperature	0.07	0.04	1.57	0.142	-0.15	0.80	-0.19	0.852
Pathogen/	Intercept	1.96	1.02	1.92	0.078	-2.55	21.22	-0.12	0.906
Endophyte	Sequencing Depth	0.00	0.00	1.16	0.270	0.00	0.00	1.48	0.166
	Microbial Source Aridity Index	0.81	0.92	0.88	0.397	36.98	19.23	1.92	0.079
	Microbial Source Minimum Temperature	0.05	0.04	1.24	0.239	1.28	0.88	1.45	0.172
All Fungi	Intercept	3.06	1.00	3.07	0.010	80.14	160.60	0.50	0.627
	Sequencing Depth	0.00	0.00	0.76	0.465	0.00	0.00	1.73	0.109
	Microbial Source Aridity Index	1.36	0.91	1.50	0.160	198.00	145.60	1.36	0.199
	Microbial Source Minimum Temperature	0.03	0.04	0.79	0.445	5.50	6.66	0.83	0.425

B. Southern Inocula Set

Fungal									
Guild	Term	Diversity				Richness			
		Estimate	SE	Z	Р	Estimate	SE	Z	Р
Arbuscular	Intercept	14.09	5.07	2.78	0.016	16.97	5.78	2.94	0.012
Mycorrhizal	Sequencing Depth	0.00	0.00	-1.22	0.246	0.00	0.00	-1.20	0.251
	Microbial Source Aridity Index	-3.99	1.00	-3.98	0.002	-17.45	7.09	-2.46	0.029
	Microbial Source Maximum Temperature	-0.32	0.16	-2.04	0.062	-0.24	0.40	-0.58	0.570
Ecto-	Intercept	1.87	5.52	0.34	0.740	45.84	20.38	2.25	0.043
mycorrhizal	Sequencing Depth	0.00	0.00	0.72	0.487	0.00	0.00	1.70	0.114
	Microbial Source Aridity Index	-1.44	1.09	-1.32	0.209	-23.96	24.98	-0.96	0.355
	Microbial Source Maximum Temperature	0.04	0.17	0.20	0.843	1.51	1.42	1.06	0.308
Pathogen/	Intercept	4.19	0.70	6.01	0.000	80.60	15.74	5.12	0.000
Endophyte	Sequencing Depth	0.00	0.00	-0.08	0.938	0.00	0.00	-1.45	0.170
	Microbial Source Aridity Index	-2.33	0.85	-2.73	0.017	-68.16	19.30	-3.53	0.004
	Microbial Source Maximum Temperature	0.00	0.05	0.06	0.951	-0.38	1.10	-0.35	0.732
All Fungi	Intercept	6.22	0.88	7.10	0.000	635.20	99.15	6.41	0.000
	Sequencing Depth	0.00	0.00	-0.83	0.422	0.00	0.00	-0.50	0.624
	Microbial Source Aridity Index	-2.94	1.08	-2.74	0.017	-498.20	121.50	-4.10	0.001
	Microbial Source Maximum Temperature	-0.03	0.06	-0.57	0.577	0.67	6.92	0.10	0.924

DF = 12 (A), 13 (B)

Table S13. Analysis of three fungal community aspects (Shannon-Weaver diversity, richness and relative abundance) on roots of surviving seedlings for select fungal guilds at A) the northern field site, and B) the southern field site. A.

Fungal Guild	Term	Diversity				Richness				Relative Abundance			
		Estimate	SE	Z	Р	Estimate	SE	Z	Р	Estimate	SE	Z	Р
a)Arbuscular	Intercept	0.95	0.12	8.00	<0.001	3.85	0.68	5.65	<0.001	464.02	1.99E+06	0.00	0.998
Mycorrhizal	Sequencing Depth	0.22	0.05	4.08	<0.001	1.24	0.23	5.42	<0.001	471.34	62.60	7.53	<0.001
	Rainfall Treatment	0.14	0.10	1.41	0.158	0.78	0.41	1.93	0.053	59.28	97.89	0.61	0.545
	Microbial Source Aridity Index	-0.01	0.05	-0.12	0.901	-0.03	0.23	-0.14	0.888	17.08	62.26	0.27	0.784
	Microbial Source Minimum												
	Temperature	0.09	0.06	1.38	0.167	0.51	0.28	1.82	0.069	37.38	82.21	0.455	0.659
b)Ecto-	Intercept	1.13	0.09	12.43	<0.001	7.04	0.52	13.47	<0.001	65877.00	1.52E+8	0.00	1.000
mycorrhizal	Sequencing Depth	0.21	0.09	2.36	0.018	1.99	0.49	4.06	<0.001	3428.40	531.94	6.45	<0.001
	Rainfall Treatment	-0.22	0.16	-1.34	0.180	-0.26	0.89	-0.29	0.768	972.05	955.14	1.02	0.309
	Microbial Source Aridity Index	-0.12	0.09	-1.31	0.191	-0.67	0.50	-1.34	0.182	311.57	561.55	0.55	0.579
	Microbial Source Minimum												
	Temperature	0.17	0.08	2.12	0.034	1.30	0.44	2.96	0.003	396.75	655.51	0.61	0.545
c)Pathogen/	Intercept	1.22	0.14	9.03	<0.001	7.49	0.88	8.46	<0.001	1071.33	1.56E+6	0.00	1.000
Endophyte	Sequencing Depth	0.14	0.06	2.50	0.012	1.58	0.33	4.76	0.000	817.64	143.28	5.71	0.000
	Seedling Mycorrhizal Type	0.05	0.18	0.25	0.801	-0.66	1.15	-0.58	0.564	-158.15	274.18	-0.58	0.564
	Rainfall Treatment	0.07	0.10	0.67	0.503	0.42	0.59	0.72	0.470	355.47	250.06	1.42	0.155
	Microbial Source Aridity Index	0.04	0.05	0.74	0.461	-0.19	0.33	-0.57	0.569	65.82	164.77	0.40	0.690
	Microbial Source Minimum												
	Temperature	0.08	0.06	1.43	0.154	0.91	0.35	2.60	0.009	-160.78	258.31	-0.62	0.534
d)All Fungi	Intercept	2.97	0.24	12.30	<0.001	49.31	5.75	8.58	<0.001				
	Sequencing Depth	0.22	0.05	4.32	<0.001	7.27	1.28	5.70	<0.001				
	Seedling Mycorrhizal Type	-0.50	0.29	-1.69	0.090	-10.21	7.18	-1.42	0.155				
	Rainfall Treatment	-0.05	0.09	-0.54	0.589	-0.05	2.19	-0.02	0.981				
	Microbial Source Aridity Index	-0.01	0.05	-0.23	0.817	-0.19	1.21	-0.15	0.877				
	Microbial Source Minimum												
	Temperature	0.11	0.06	1.89	0.059	3.16	1.43	2.21	0.027				

DF a) 65, b) 41 ,c) 106 ,d) 106

-	
1)	
n	
$\boldsymbol{\nu}$	٠

Fungal Guild	Term	Diversity				Richness				Relative Abundance				
		Ectimato	SE	7	D	Ectimato	SE	7	D	Ectimato	CE	7	D	
		Estimate	30	2	<u>г</u>	Estimate	35	2	<u>г</u>		JL	2	г 0.005	
a)Arbuscular	Intercept	1.10	0.27	4.11	<0.001	3.96	0.90	4.41	<0.001	275.04	4.16E+04	0.01	0.995	
Mycorrhizal	Sequencing Depth	0.22	0.05	4.59	<0.001	0.67	0.15	4.47	<0.001	188.95	22.17	8.52	<0.001	
	Rainfall Treatment	0.10	0.09	1.03	0.304	0.26	0.29	0.89	0.374	-98.65	42.39	-2.33	0.020	
	Microbial Source Aridity Index	-0.15	0.07	-2.02	0.043	-0.42	0.24	-1.77	0.076	0.02	35.07	0.00	0.999	
	Microbial Source Maximum													
	Temperature	-0.03	0.07	-0.53	0.599	-0.05	0.21	-0.22	0.823	-1.02	29.91	-0.03	0.973	
										-				
b)Ecto-	Intercept	1.14	0.10	11.34	<0.001	7.48	1.33	5.62	<0.001	19248.58	NA	NA	NA	
mycorrhizal	Sequencing Depth	-0.05	0.06	-0.88	0.376	-0.32	0.31	-1.02	0.308	2106.42	251.79	8.37	<0.001	
	Rainfall Treatment	-0.06	0.13	-0.49	0.625	-0.69	0.65	-1.07	0.283	-481.22	504.25	-0.95	0.340	
	Microbial Source Aridity Index	-0.04	0.07	-0.63	0.527	-0.16	0.60	-0.26	0.792	-699.48	534.68	-1.31	0.191	
	Microbial Source Maximum													
	Temperature	0.10	0.07	1.33	0.185	0.76	0.40	1.89	0.059	19.08	308.00	0.06	0.951	
c)Pathogen/	Intercept	1.78	0.06	29.70	<0.001	11.24	0.68	16.56	<0.001	994.83	2.54E+06	0.00	1.000	
Endophyte	Sequencing Depth	0.26	0.04	6.50	<0.001	2.65	0.30	8.94	<0.001	1118.19	116.47	9.60	<0.001	
	Seedling Mycorrhizal Type	-0.48	0.09	-5.55	<0.001	-4.28	0.83	-5.15	<0.001	-537.23	463.71	-1.16	0.247	
	Rainfall Treatment	-0.03	0.08	-0.42	0.675	-0.20	0.58	-0.34	0.735	182.84	225.22	0.81	0.417	
	Microbial Source Aridity Index	-0.08	0.04	-2.04	0.041	-0.37	0.33	-1.11	0.266	273.83	245.68	1.11	0.265	
	Microbial Source Maximum													
	Temperature	-0.03	0.04	-0.64	0.519	-0.17	0.37	-0.46	0.646	-90.39	241.72	-0.37	0.709	
d)All Fungi	Intercept	2.85	0.07	38.82	<0.001	50.61	2.18	23.24	<0.001					
	Sequencing Depth	0.15	0.04	3.60	<0.001	7.69	1.02	7.53	<0.001					
	Seedling Mycorrhizal Type	-0.75	0.10	-7.74	<0.001	-20.67	2.71	-7.62	<0.001					
	Rainfall Treatment	0.03	0.08	0.39	0.699	-0.11	2.01	-0.05	0.957					
	Microbial Source Aridity Index	-0.03	0.04	-0.81	0.419	0.74	1.13	0.65	0.513					
	Microbial Source Maximum													
	Temperature	0.01	0.05	0.23	0.820	-0.64	1.26	-0.51	0.613					

*Bold text, P < 0.05. Italicized text, P < 0.10 (excluding the model intercept and sequencing depth terms, included for technical reasons). Results for fixed effects shown. Models also included crossed random effects seedling cohort, plot, and phylogenetic covariance among seedling species. For analysis of arbuscular mycorrhizal fungal communities, only AM associated seedling species were used. For analysis of ectomycorrhizal fungal communities, only EM associated seedling species were used. DF Northern Site: a) 65, b) 41, c) 106, d) 106 DF Southern Site: a) 140, b) 60, c) 200, d) 200 Table S14. Statistical results of generalized linear mixed models comparing survival probability for seedlings in a given microbial inocula against the average value for three aspects of community structure (Shannon-Weaver diversity, richness, and relative abundance) of various fungal guilds (and the full fungal community) in roots of surviving seedlings given that microbial inocula, at A) the northern field site and B) the southern field site.

		Fungal Con	nmunit	y Aspect										
Northern Site	e - Kemp Natural Res	ource Station	Diversity				Richness				Relative al	bundance		
Fungal														
Guild	Seedling Type	Term	Estimate	SE	Z	Р	Estimate	SE	Z	Р	Estimate	SE	Z	Р
Arbuscular	Arbuscular	(Intercept)	-1.47	1.06	-1.38	0.167	-1.33	0.87	-1.53	0.126	-1.64	0.76	-2.18	0.030
Mycorrhizal	Mycorrhizal	Rainfall Treatment	-0.85	1.60	-0.53	0.597	-0.76	1.35	-0.56	0.575	-0.28	1.05	-0.26	0.792
		Average AMF aspect	0.09	1.17	0.08	0.937	-0.02	0.22	-0.07	0.942	3.92	11.10	0.35	0.724
		Rainfall Trt*AMF	0.87	1.65	0.53	0.599	0.18	0.31	0.57	0.572	5.69	16.12	0.35	0.724
	Ambient Rainfall	(Intercept)	-1.47	1.06	-1.38	0.167	-1.33	0.87	-1.53	0.126	-1.64	0.76	-2.18	0.030
		Average AMF aspect	0.09	1.17	0.08	0.937	-0.02	0.22	-0.07	0.942	3.92	11.10	0.35	0.724
	Reduced Rainfall	(Intercept)	-2.32	1.20	-1.94	0.053	-2.08	1.04	-2.01	0.044	-1.92	0.73	-2.62	0.009
		Average AMF aspect	0.96	1.16	0.83	0.408	0.16	0.22	0.73	0.465	9.61	11.69	0.82	0.411
Ecto-	Ectomycorrhizal	(Intercept)	-1.30	0.62	-2.11	0.035	-1.04	0.59	-1.76	0.078	-2.62	1.01	-2.60	0.009
mycorrhizal		Rainfall Treatment	-1.27	0.90	-1.42	0.156	-1.43	0.89	-1.61	0.108	1.17	1.50	0.78	0.438
		Average EMF aspect	-0.04	0.55	-0.07	0.943	-0.05	0.08	-0.55	0.584	3.15	2.36	1.33	0.183
		Rainfall Trt*EMF aspect	0.99	0.91	1.09	0.275	0.14	0.12	1.17	0.243	-4.00	3.37	-1.19	0.236
	Ambient Rainfall	(Intercept)	-1.30	0.62	-2.11	0.035	-1.04	0.59	-1.76	0.078	-2.62	1.01	-2.60	0.009
		Average EMF aspect	-0.04	0.55	-0.07	0.943	-0.05	0.08	-0.55	0.584	3.15	2.36	1.33	0.183
	Reduced Rainfall	(Intercept)	-2.58	0.65	-3.97	0.000	-2.47	0.67	-3.71	0.000	-1.46	1.12	-1.31	0.192
		Average EMF aspect	0.95	0.72	1.32	0.186	0.10	0.09	1.08	0.280	-0.85	2.40	-0.35	0.723
Pathogen/	All	(Intercept)	-0.21	0.84	-0.25	0.801	0.82	0.72	1.15	0.251	-1.12	0.34	-3.28	0.001
Endophyte		Rainfall Treatment	-0.84	1.29	-0.65	0.515	-2.23	1.10	-2.03	0.043	-0.03	0.59	-0.06	0.954

A.

37

		Average PEF aspect Rainfall Trt*PEF aspect	-0.95 0.55	0.66 0.97	-1.43 0.57	0.153 0.571	-0.30 0.27	0.10 0.14	-3.08 1.97	0.002 0.049	-2.27 -0.48	2.50 3.84	-0.91 -0.13	0.363 0.900
	Ambient Rainfall	(Intercept) Average PEF aspect	-0.21 -0.95	0.84 0.66	-0.25 -1.43	0.801 0.153	0.82 -0.30	0.72 0.10	1.15 - 3.08	0.251 0.002	-1.12 -2.27	0.34 2.50	-3.28 -0.91	0.001 0.363
	Reduced Rainfall	(Intercept) Average PEF aspect	-1.05 -0.40	0.98 0.71	-1.08 -0.56	0.282 0.574	-1.40 -0.02	0.83 0.10	-1.69 -0.24	0.092 0.812	-1.15 -2.76	0.49 2.91	-2.38 -0.95	0.017 0.344
All	All	(Intercept) Rainfall Treatment Average Fungal aspect Rainfall Trt*Fungal aspect	4.45 -4.40 -2.13 1.53	2.03 2.91 0.75 1.07	2.19 -1.51 -2.86 1.44	0.029 0.131 0.004 0.151	3.57 -3.79 -0.11 <i>0.08</i>	1.30 1.88 0.03 <i>0.04</i>	2.75 -2.01 -3.78 <i>1.92</i>	0.006 0.044 0.000 <i>0.054</i>				
	Ambient Rainfall	(Intercept) Average Fungal aspect	4.45 -2.13	2.03 0.75	2.19 -2.86	0.029 0.004	3.57 -0.11	1.30 0.03	2.75 -3.78	0.006 0.000				
	Reduced Rainfall	(Intercept) Average Fungal aspect	0.05 -0.60	2.09 0.76	0.02 -0.79	0.981 0.430	-0.22 -0.03	1.36 0.03	-0.16 -1.01	0.870 0.314				

1	D	
	D	

			Fungal Com	nunity /	Aspect									
Southern Site	- Allerton Park and I	Recreation Center	Diversity				Richness				Relative al	bundance	2	
Fungal Guild	Seedling Type	Term	Estimate	SE	Z	Р	Estimate	SE	Z	Р	Estimate	SE	Z	Р
Arbuscular	Arbuscular	(Intercept)	-0.26	0.82	-0.32	0.753	-0.12	0.94	-0.13	0.895	-0.01	0.60	-0.01	0.991
Mycorrhizal	Mycorrhizal	Rainfall Treatment	-1.73	1.22	-1.41	0.157	-1.52	1.36	-1.11	0.266	-0.85	0.77	-1.11	0.267
		Average AMF aspect	0.50	0.73	0.68	0.494	0.10	0.23	0.45	0.653	9.00	17.31	0.52	0.603
		Rainfall Trt*AMF	1.28	1.03	1.24	0.214	0.31	0.32	0.98	0.327	29.41	24.30	1.21	0.226
	Ambient Rainfall	(Intercept)	-0.26	0.82	-0.32	0.753	-0.12	0.94	-0.13	0.895	-0.01	0.60	-0.01	0.991
		Average AMF aspect	0.50	0.73	0.68	0.494	0.10	0.23	0.45	0.653	9.00	17.31	0.52	0.603
	Reduced Rainfall	(Intercept)	-1.99	0.90	-2.19	0.028	-1.64	0.99	-1.66	0.096	-0.86	0.49	-1.77	0.077
		Average AMF aspect	1.78	0.73	2.43	0.015	0.42	0.22	1.86	0.062	38.41	17.06	2.25	0.024
Ecto-	Ectomycorrhizal	(Intercept)	-0.11	0.84	-0.14	0.892	-2.21	1.03	-2.15	0.032	-2.89	0.99	-2.93	0.003
mycorrhizal		Rainfall Treatment	-1.81	1.34	-1.35	0.176	0.63	1.21	0.52	0.603	1.63	1.26	1.30	0.193
		Average EMF aspect	-0.21	0.62	-0.35	0.728	0.27	0.15	1.80	0.073	4.70	1.81	2.60	0.009
		Rainfall Trt*EMF aspect	1.15	1.00	1.15	0.250	-0.14	0.18	-0.77	0.440	-3.48	2.48	-1.40	0.160
	Ambient Rainfall	(Intercept)	-0.11	0.84	-0.14	0.892	-2.21	1.03	-2.15	0.032	-2.89	0.99	-2.93	0.003
		Average EMF aspect	-0.21	0.62	-0.35	0.728	0.27	0.15	1.80	0.073	4.70	1.81	2.60	0.009
	Reduced Rainfall	(Intercept)	-1.93	1.05	-1.84	0.066	-1.58	0.63	-2.52	0.012	-1.26	0.78	-1.62	0.105
		Average EMF aspect	0.94	0.79	1.19	0.236	0.13	0.09	1.46	0.144	1.23	1.69	0.73	0.468
Pathogen/	All	(Intercept)	0.97	1.23	0.79	0.427	1.08	1.10	0.98	0.326	0.90	0.40	2.23	0.026
Endophyte		Rainfall Treatment	-2.41	1.67	-1.45	0.148	-1.14	1.49	-0.77	0.444	0.16	0.59	0.28	0.783
		Average PEF aspect	-0.68	0.81	-0.84	0.402	-0.12	0.12	-1.03	0.301	-7.54	3.11	-2.42	0.015
		Rainfall Trt*PEF aspect	1.46	1.10	1.33	0.185	0.10	0.16	0.63	0.531	-2.98	4.59	-0.65	0.517
	Ambient Rainfall	(Intercept)	0.97	1.23	0.79	0.427	1.08	1.10	0.98	0.326	0.90	0.40	2.23	0.026
		Average PEF aspect	-0.68	0.81	-0.84	0.402	-0.12	0.12	-1.03	0.301	-7.54	3.11	-2.42	0.015
	Deduced Deinfell	(lateraent)	1 //	1 1 2	1 20	0 202	0.06	1 01	0.06	0.050	1.06	0.42	2 47	0.012
	Reduced Rainfall	(intercept)	-1.44	1.13	-1.28	0.202	-0.06	1.01	-0.06	0.950	1.06	0.43	2.47	0.013
														39

		Average PEF aspect	0.78	0.75	1.05	0.295	-0.02	0.11	-0.20	0.838	-10.51	3.38	-3.11	0.002
All	All	(Intercept)	1.07	1.17	0.91	0.361	1.51	0.90	1.68	0.093				
		Rainfall Treatment	-0.32	1.56	-0.21	0.838	-0.35	1.21	-0.29	0.770				
		Average Fungal aspect Rainfall Trt*Fungal	-0.45	0.46	-0.96	0.336	-0.04	0.02	-1.74	0.082				
		aspect	0.04	0.62	0.07	0.947	0.00	0.03	0.12	0.903				
	Ambient Rainfall	(Intercept)	1.07	1.17	0.91	0.361	1.51	0.90	1.68	0.093				
		Average Fungal aspect	-0.45	0.46	-0.96	0.336	-0.04	0.02	-1.74	0.082				
	Reduced Rainfall	(Intercept)	0.75	1.04	0.72	0.474	1.16	0.80	1.44	0.149				
		Average Fungal aspect	-0.40	0.41	-0.98	0.328	-0.03	0.02	-1.78	0.075				

*Bold text, P < 0.05. Italicized text, P < 0.10. Results for fixed effects shown. Models also included random effects of plot (nested within cohort year) and phylogenetic covariance among seedling species. For analysis of arbuscular mycorrhizal fungal communities, only AM associated seedling species were used. For analysis of ectomycorrhizal fungal communities, only EM associated seedling species were used. DF = 23 for models of full experiment, 11 for models within rainfall treatments

Model	· · · · · · · · · · · · · · · · · · ·	Estimate	SE		Z	Р	
AMF diversity ~ Microbial	(Intercept)	14.09		5.07	2.78		0.016
Source Climate	Sequencing Depth	0.00		0.00	-1.22		0.246
	Microbial Source Maximum	-0.32		0.16	-2.04	!	0.062
	Temperature						
	Microbial Source Aridity Index	-3.99		1.00	-3.98		0.002
	(Intercept)	-0.55		5.66	-0.10)	0.923
Seedling Biomass ~	Microbial Source Maximum	0.04		0.16	0.23		0.821
Microbial Source Climate	Temperature						
	Microbial Source Aridity Index	-2.93		1.25	-2.34		0.019
Seedling Biomass ~ AMF	(Intercept)	-2.20		1.81	-1.22	,	0.224
diversity	Microbial Source AMF diversity	0.69		0.21	3.30)	0.001
Seedling Biomass ~	(Intercept)	-2.11		5.62	-0.38		0.708
Microbial Source Climate +	Microbial Source Maximum	0.03		0.16	0.16		0.872
AMF diversity	Temperature						
	Microbial Source Aridity Index	-1.00		1.67	-0.60)	0.550
	Microbial Source AMF diversity	0.53		0.31	1.73		0.083

Table S15. Mediation analysis for AM associating seedlings in the Warm-Dry treatment in the greenhouse experiment using background soil from the southern field site (Allerton Park and Retreat Center, Illinois, USA)

Mediation analysis performed through a series of four models. Model 1: regression of AM fungal diversity in each microbial inocula source against the source climate variables. Model 2: regression of seedling biomass against the climate conditions of the microbial inocula source site. Model 3: regression of seedling biomass against the AM fungal diversity in the microbial inocula source, and Model 4: multiple regression of seedling biomass against both the climate conditions and the AM fungal diversity of the microbial inocula source. Mediation is demonstrated if 1) the independent variable (microbial source Aridity Index) is significant predictor of the dependent variable (Seedling Biomass, Model 2), 2) the independent variable is a significant predictor of the mediator (AM fungal diversity, Model 1), 3) when the dependent variable is regressed against both the mediator and the independent variable, the strength of the coefficient for the independent variable is greatly reduced (Model 4) (Baron and Kenny 1986). Baron, R. M.; Kenny, D. A."The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations". Journal of Personality and Social Psychology. **51** (6): 1173–1182. (1986)

			Ambient	Ambient				
			Soil	Reduced				
			Moisture	Rainfall Soil	%			
Site	Year	Plot	(%)	Moisture (%)	Difference			
Kemp NRS	2019	А	0.19	0.11	-0.43			
	2019	В	0.16	0.12	-0.25			
	2019	С	0.19	0.16	-0.14			
	2020	А	0.17	0.14	-0.20			
	2020	В	0.23	0.11	-0.52			
	2020	С	0.18	0.15	-0.13			
Allerton								
PRC	2019	А	0.21	0.17	-0.22			
	2019	В	0.25	0.21	-0.15			
	2019	С	0.28	0.27	-0.04			
	2020	А	0.22	0.15	-0.31			
	2020	В	0.18	0.17	-0.07			
	2020	С	0.16	0.07	-0.59			
	2021	А	0.24	0.15	-0.36			
	2021	В	0.33	0.31	-0.05			
	2021	С	0.21	0.17	-0.20			

Table S16. Soil moisture values (% v/v) for monitored experimental plots, averaged from the dates of shelter installation (July) through shelter removal (September) for two (northern site) or three (southern site) experimental years.

References and Notes

- C. Román-Palacios, J. J. Wiens, Recent responses to climate change reveal the drivers of species extinction and survival. *Proc. Natl. Acad. Sci. U.S.A.* **117**, 4211–4217 (2020). <u>doi:10.1073/pnas.1913007117</u> <u>Medline</u>
- M. C. Urban, Climate change. Accelerating extinction risk from climate change. *Science* 348, 571–573 (2015). <u>doi:10.1126/science.aaa4984</u> <u>Medline</u>
- 3. C. D. Thomas, A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. F. De Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. Van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. T. Peterson, O. L. Phillips, S. E. Williams, Extinction risk from climate change. *Nature* 427, 145–148 (2004). <u>doi:10.1038/nature02121 Medline</u>
- 4. T. Jezkova, J. J. Wiens, Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. *Proc. Biol. Sci.* 283, 20162104 (2016). <u>doi:10.1098/rspb.2016.2104</u> <u>Medline</u>
- 5. R. Berkelmans, M. J. H. van Oppen, The role of zooxanthellae in the thermal tolerance of corals: A 'nugget of hope' for coral reefs in an era of climate change. *Proc. Biol. Sci.* 273, 2305–2312 (2006). doi:10.1098/rspb.2006.3567 Medline
- 6. R. J. Rodriguez, J. Henson, E. Van Volkenburgh, M. Hoy, L. Wright, F. Beckwith, Y.-O. Kim, R. S. Redman, Stress tolerance in plants via habitat-adapted symbiosis. *ISME J.* 2, 404–416 (2008). doi:10.1038/ismej.2007.106 Medline
- 7. A. A. H. A. Latef *et al.*, Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A review. *J. Plant Biol.* **59**, 407–426 (2016). <u>doi:10.1007/s12374-016-0237-7</u>
- 8. S. S. Porter, R. Bantay, C. A. Friel, A. Garoutte, K. Gdanetz, K. Ibarreta, B. M. Moore, P. Shetty, E. Siler, M. L. Friesen, Beneficial microbes ameliorate abiotic and biotic sources of stress on plants. *Funct. Ecol.* 34, 2075–2086 (2020). doi:10.1111/1365-2435.13499
- 9. P. M. Delaux, S. Schornack, Plant evolution driven by interactions with symbiotic and pathogenic microbes. *Science* **371**, 796–807 (2021). <u>doi:10.1126/science.aba6605</u> <u>Medline</u>
- H. Lambers, C. Mougel, B. Jaillard, P. Hinsinger, Plant-microbe-soil interactions in the rhizosphere: An evolutionary perspective. *Plant Soil* **321**, 83–115 (2009). doi:10.1007/s11104-009-0042-x
- 11. I. S. Acuña-Rodríguez, K. K. Newsham, P. E. Gundel, C. Torres-Díaz, M. A. Molina-Montenegro, Functional roles of microbial symbionts in plant cold tolerance. *Ecol. Lett.* 23, 1034–1048 (2020). <u>doi:10.1111/ele.13502 Medline</u>
- L. M. Márquez, R. S. Redman, R. J. Rodriguez, M. J. Roossinck, A virus in a fungus in a plant: Three-way symbiosis required for thermal tolerance. *Science* **315**, 513–515 (2007). <u>doi:10.1126/science.1136237</u> <u>Medline</u>
- T. Lehto, J. J. Zwiazek, Ectomycorrhizas and water relations of trees: A review. *Mycorrhiza* 21, 71–90 (2011). doi:10.1007/s00572-010-0348-9 Medline
- 14. R. Lata, S. Chowdhury, S. K. Gond, J. F. White Jr., Induction of abiotic stress tolerance in plants by endophytic microbes. *Lett. Appl. Microbiol.* **66**, 268–276 (2018). <u>doi:10.1111/lam.12855</u> <u>Medline</u>
- D. Naylor, D. Coleman-Derr, Drought Stress and Root-Associated Bacterial Communities. *Front. Plant Sci.* 8, 2223 (2018). <u>doi:10.3389/fpls.2017.02223</u> <u>Medline</u>
- M. E. Afkhami, P. J. McIntyre, S. Y. Strauss, Mutualist-mediated effects on species' range limits across large geographic scales. *Ecol. Lett.* 17, 1265–1273 (2014). <u>doi:10.1111/ele.12332</u> <u>Medline</u>
- 17. P. D. Stahl, W. K. Smith, Effects of different geographic isolates of Glomus on the water relations of *Agropyron smithii*. *Mycologia* **76**, 261–267 (1984). <u>doi:10.1080/00275514.1984.12023835</u>

- I. M. Ware, M. E. Van Nuland, Z. K. Yang, C. W. Schadt, J. A. Schweitzer, J. K. Bailey, Climate-driven divergence in plant-microbiome interactions generates range-wide variation in bud break phenology. *Commun. Biol.* 4, 748 (2021). <u>doi:10.1038/s42003-021-02244-5</u> <u>Medline</u>
- C. Allsup, R. Lankau, Migration of soil microbes may promote tree seedling tolerance to drying conditions. *Ecology* 100, e02729 (2019). doi:10.1002/ecy.2729 Medline
- 20. J. A. Lau, J. T. Lennon, Rapid responses of soil microorganisms improve plant fitness in novel environments. *Proc. Natl. Acad. Sci. U.S.A.* 109, 14058–14062 (2012). doi:10.1073/pnas.1202319109 <u>Medline</u>
- 21. S. E. Smith, D. J. Read, Mycorrhizal Symbiosis (Academic Press, 2008).
- 22. M. A. Bingham, S. Simard, Ectomycorrhizal Networks of Pseudotsuga menziesii var. glauca Trees Facilitate Establishment of Conspecific Seedlings Under Drought. *Ecosystems* 15, 188–199 (2012). doi:10.1007/s10021-011-9502-2
- 23. C. P. terHorst, P. C. Zee, Eco-evolutionary dynamics in plant–soil feedbacks. *Funct. Ecol.* **30**, 1062–1072 (2016). <u>doi:10.1111/1365-2435.12671</u>
- 24. S. A. Smith, M. J. Donoghue, Rates of molecular evolution are linked to life history in flowering plants. *Science* **322**, 86–89 (2008). <u>doi:10.1126/science.1163197</u> <u>Medline</u>
- 25. R. R. Junker, X. He, J. C. Otto, V. Ruiz-Hernández, M. Hanusch, Divergent assembly processes? A comparison of the plant and soil microbiome with plant communities in a glacier forefield. *FEMS Microbiol. Ecol.* **97**, fiab135 (2021). <u>doi:10.1093/femsec/fiab135 Medline</u>
- 26. M. J. Choudoir, A. Barberán, H. L. Menninger, R. R. Dunn, N. Fierer, Variation in range size and dispersal capabilities of microbial taxa. *Ecology* **99**, 322–334 (2018). <u>doi:10.1002/ecy.2094</u> <u>Medline</u>
- 27. P. B. Reich, R. Bermudez, R. A. Montgomery, R. L. Rich, K. E. Rice, S. E. Hobbie, A. Stefanski, Even modest climate change may lead to major transitions in boreal forests. *Nature* 608, 540–545 (2022). doi:10.1038/s41586-022-05076-3 Medline
- 28. L. R. Iverson, A. M. Prasad, S. N. Matthews, M. P. Peters, Lessons Learned While Integrating Habitat, Dispersal, Disturbance, and Life-History Traits into Species Habitat Models Under Climate Change. *Ecosystems* 14, 1005–1020 (2011). doi:10.1007/s10021-011-9456-4
- 29. R. J. Dial, C. T. Maher, R. E. Hewitt, P. F. Sullivan, Sufficient conditions for rapid range expansion of a boreal conifer. *Nature* **608**, 546–551 (2022). <u>doi:10.1038/s41586-022-05093-2</u> <u>Medline</u>
- 30. C. C. F. Boonman, M. A. J. Huijbregts, A. Benítez-López, A. M. Schipper, W. Thuiller, L. Santini, Traitbased projections of climate change effects on global biome distributions. *Divers. Distrib.* 28, 25–37 (2022). doi:10.1111/ddi.13431
- 31. G. Forzieri, V. Dakos, N. G. McDowell, A. Ramdane, A. Cescatti, Emerging signals of declining forest resilience under climate change. *Nature* 608, 534–539 (2022). doi:10.1038/s41586-022-04959-9 <u>Medline</u>
- 32. G. B. Bonan, Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. *Science* **320**, 1444–1449 (2008). <u>doi:10.1126/science.1155121</u> <u>Medline</u>
- 33. Materials and methods are available as supplementary materials.
- 34. N. C. Johnson, G. W. T. Wilson, M. A. Bowker, J. A. Wilson, R. M. Miller, Resource limitation is a driver of local adaptation in mycorrhizal symbioses. *Proc. Natl. Acad. Sci. U.S.A.* 107, 2093–2098 (2010). doi:10.1073/pnas.0906710107 Medline
- 35. P. G. Kennedy, K. G. Peay, T. D. Bruns, Root tip competition among ectomycorrhizal fungi: Are priority effects a rule or an exception? *Ecology* **90**, 2098–2107 (2009). <u>doi:10.1890/08-1291.1</u> <u>Medline</u>

- 36. G. D. A. Werner, E. T. Kiers, Order of arrival structures arbuscular mycorrhizal colonization of plants. *New Phytol.* **205**, 1515–1524 (2015). <u>doi:10.1111/nph.13092</u> <u>Medline</u>
- 37. K. M. DeAngelis, G. Pold, B. D. Topçuoğlu, L. T. van Diepen, R. M. Varney, J. L. Blanchard, J. Melillo, S. D. Frey, Long-term forest soil warming alters microbial communities in temperate forest soils. *Front. Microbiol.* 6, 104 (2015). doi:10.3389/fmicb.2015.00104 Medline
- 38. M. E. Van Nuland, D. P. Smith, J. M. Bhatnagar, A. Stefanski, S. E. Hobbie, P. B. Reich, K. G. Peay, Warming and disturbance alter soil microbiome diversity and function in a northern forest ecotone. *FEMS Microbiol. Ecol.* 96, fiaa108 (2020). doi:10.1093/femsec/fiaa108 Medline
- 39. A. Canarini, H. Schmidt, L. Fuchslueger, V. Martin, C. W. Herbold, D. Zezula, P. Gündler, R. Hasibeder, M. Jecmenica, M. Bahn, A. Richter, Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community. *Nat. Commun.* 12, 5308 (2021). <u>doi:10.1038/s41467-021-25675-4</u> <u>Medline</u>
- 40. S. D. Frey, R. Drijber, H. Smith, J. Melillo, Microbial biomass, functional capacity, and community structure after 12 years of soil warming. *Soil Biol. Biochem.* 40, 2904–2907 (2008). doi:10.1016/j.soilbio.2008.07.020
- 41. J. Fargione, D. L. Haase, O. T. Burney, O. A. Kildisheva, G. Edge, S. C. Cook-Patton, T. Chapman, A. Rempel, M. D. Hurteau, K. T. Davis, S. Dobrowski, S. Enebak, R. De La Torre, A. A. R. Bhuta, F. Cubbage, B. Kittler, D. Zhang, R. W. Guldin, Challenges to the Reforestation Pipeline in the United States. *Front. For. Glob. Change* 4, 629198 (2021). doi:10.3389/ffgc.2021.629198
- 42. D. Marčiulynienė, A. Marčiulynas, J. Lynikienė, M. Vaičiukynė, A. Gedminas, A. Menkis, DNA-Metabarcoding of Belowground Fungal Communities in Bare-Root Forest Nurseries: Focus on Different Tree Species. *Microorganisms* 9, 150 (2021). <u>doi:10.3390/microorganisms9010150</u> <u>Medline</u>
- 43. R. A. Lankau, Data from: Enhanced climate tolerance for trees derived from microbial communities, Dryad (2023); <u>https://doi.org/10.5061/dryad.k98sf7mb6</u>
- 44. S. Begueria, S. M. Vicente-Serrano, SPEI: Calculation of the standardized precipitation-evapotranspiration index, R package version 1.7 (2017). https://cran.r-project.org/web/packages/SPEI/SPEI.pdf/
- 45. PRISM Climate Group, PRISM Climate Data, Oregon State University, (data created Jan. 2015 to Dec. 2021), accessed 16 June 2022; https://prism.oregonstate.edu/
- 46. A. R. Ives, R. Dinnage, L. A. Nell, M. Helmus, D. Li, Package 'phyr': model based phylogenetic analysis, R package version 1.1.0 (2020); <u>https://CRAN.R-project.org/package=phyr</u>
- 47. Y. Jin, H. Qian, V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants. *Ecography* **42**, 1353–1359 (2019). <u>doi:10.1111/ecog.04434</u>
- 48. S. A. Smith, J. W. Brown, Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018). doi:10.1002/ajb2.1019 Medline
- 49. A. E. Zanne, D. C. Tank, W. K. Cornwell, J. M. Eastman, S. A. Smith, R. G. FitzJohn, D. J. McGlinn, B. C. O'Meara, A. T. Moles, P. B. Reich, D. L. Royer, D. E. Soltis, P. F. Stevens, M. Westoby, I. J. Wright, L. Aarssen, R. I. Bertin, A. Calaminus, R. Govaerts, F. Hemmings, M. R. Leishman, J. Oleksyn, P. S. Soltis, N. G. Swenson, L. Warman, J. M. Beaulieu, Three keys to the radiation of angiosperms into freezing environments. *Nature* 506, 89–92 (2014). doi:10.1038/nature12872 Medline
- 50. B. Wang, Y. L. Qiu, Phylogenetic distribution and evolution of mycorrhizas in land plants. *Mycorrhiza* **16**, 299–363 (2006). doi:10.1007/s00572-005-0033-6 Medline
- 51. T. M. Therneau, coxme: Mixed Effects Cox Models, R package version 2.2-18.1 (2022); <u>https://CRAN.R-project.org/package=coxme</u>
- 52. D. R. Cox, Regression Models and Life-Tables. J R Stat Soc Series B Stat Methodol 34, 187–202 (1972).

- 53. R. A. Lankau, D. P. Keymer, Ectomycorrhizal fungal richness declines towards the host species' range edge. *Mol. Ecol.* **25**, 3224–3241 (2016). <u>doi:10.1111/mec.13628 Medline</u>
- 54. H. Toju, A. S. Tanabe, S. Yamamoto, H. Sato, High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. *PLOS ONE* 7, e40863 (2012). <u>doi:10.1371/journal.pone.0040863</u> Medline
- 55. T. J. White, T. Bruns, S. Lee, J. W. Taylor, in *PCR Protocols: A Guide to Methods and Applications*, M. A. Innis, D. H. Gelfand, J. J. Snisky, T. J. White, Eds. (Academic Press, Inc., 1990), pp. 315–325.
- 56. B. J. Callahan, P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, S. P. Holmes, DADA2: Highresolution sample inference from Illumina amplicon data. *Nat. Methods* 13, 581–583 (2016). <u>doi:10.1038/nmeth.3869 Medline</u>
- 57. R. H. Nilsson, K.-H. Larsson, A. F. S. Taylor, J. Bengtsson-Palme, T. S. Jeppesen, D. Schigel, P. Kennedy, K. Picard, F. O. Glöckner, L. Tedersoo, I. Saar, U. Kõljalg, K. Abarenkov, The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. *Nucleic Acids Res.* 47, D259–D264 (2019). doi:10.1093/nar/gky1022 Medline
- 58. L. Tedersoo, M. Bahram, L. Zinger, R. H. Nilsson, P. G. Kennedy, T. Yang, S. Anslan, V. Mikryukov, Best practices in metabarcoding of fungi: From experimental design to results. *Mol. Ecol.* **31**, 2769–2795 (2022). doi:10.1111/mec.16460 Medline
- 59. S. Polme, K. Abarenkov, R. Henrik Nilsson, B. D. Lindahl, K. E. Clemmensen, H. Kauserud, N. Nguyen, R. Kjøller, S. T. Bates, P. Baldrian, T. G. Frøslev, K. Adojaan, A. Vizzini, A. Suija, D. Pfister, H.-O. Baral, H. Järv, H. Madrid, J. Nordén, J.-K. Liu, J. Pawlowska, K. Põldmaa, K. Pärtel, K. Runnel, K. Hansen, K.-H. Larsson, K. D. Hyde, M. Sandoval-Denis, M. E. Smith, M. Toome-Heller, N. N. Wijayawardene, N. Menolli Jr., N. K. Reynolds, R. Drenkhan, S. S. N. Maharachchikumbura, T. B. Gibertoni, T. Læssøe, W. Davis, Y. Tokarev, A. Corrales, A. M. Soares, A. Agan, A. R. Machado, A. Argüelles-Moyao, A. Detheridge, A. de Meiras-Ottoni, A. Verbeken, A. K. Dutta, B.-K. Cui, C. K. Pradeep, C. Marín, D. Stanton, D. Gohar, D. N. Wanasinghe, E. Otsing, F. Aslani, G. W. Griffith, T. H. Lumbsch, H.-P. Grossart, H. Masigol, I. Timling, I. Hiiesalu, J. Oja, J. Y. Kupagme, J. Geml, J. Alvarez-Manjarrez, K. Ilves, K. Loit, K. Adamson, K. Nara, K. Küngas, K. Rojas-Jimenez, K. Bitenieks, L. Irinvi, L. G. Nagy, L. Soonvald, L.-W. Zhou, L. Wagner, M. C. Aime, M. Öpik, M. I. Mujica, M. Metsoja, M. Ryberg, M. Vasar, M. Murata, M. P. Nelsen, M. Cleary, M. C. Samarakoon, M. Doilom, M. Bahram, N. Hagh-Doust, O. Dulya, P. Johnston, P. Kohout, O. Chen, O. Tian, R. Nandi, R. Amiri, R. H. Perera, R. dos Santos Chikowski, R. L. Mendes-Alvarenga, R. Garibay-Orijel, R. Gielen, R. Phookamsak, R. S. Jayawardena, S. Rahimlou, S. C. Karunarathna, S. Tibpromma, S. P. Brown, S.-K. Sepp, S. Mundra, Z.-H. Luo, T. Bose, T. Vahter, T. Netherway, T. Yang, T. May, T. Varga, W. Li, V. R. M. Coimbra, V. R. T. de Oliveira, V. X. de Lima, V. S. Mikryukov, Y. Lu, Y. Matsuda, Y. Miyamoto, U. Kõljalg, L. Tedersoo, FungalTraits: A user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1-16 (2020). doi:10.1007/s13225-020-00466-2