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1  |  INTRODUC TION

Fungi have traditionally been identified based on macro- and micro-
morphological features of fruiting body specimens or pure cultures. 
The introduction of molecular techniques established in the late 
1980s represented a significant leap forward in fungal identification. 

Especially PCR amplification combined with Sanger sequencing of 
the nuclear 18S (SSU) and 28S (LSU) ribosomal rRNA genes and the 
nuclear ribosomal internal transcribed spacer (ITS) region from fun-
gal tissue (e.g., lichen thalli, lesions in plant and animal tissue, cultures 
from environmental samples and ectomycorrhizal root tips) quickly 
became popular and offered unprecedented taxonomic resolution. 
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Abstract
The development of high-throughput sequencing (HTS) technologies has greatly im-
proved our capacity to identify fungi and unveil their ecological roles across a variety 
of ecosystems. Here we provide an overview of current best practices in metabar-
coding analysis of fungal communities, from experimental design through molecular 
and computational analyses. By reanalysing published data sets, we demonstrate that 
operational taxonomic units (OTUs) outperform amplified sequence variants (ASVs) 
in recovering fungal diversity, a finding that is particularly evident for long markers. 
Additionally, analysis of the full-length ITS region allows more accurate taxonomic 
placement of fungi and other eukaryotes compared to the ITS2  subregion. Finally, 
we show that specific methods for compositional data analyses provide more reliable 
estimates of shifts in community structure. We conclude that metabarcoding analyses 
of fungi are especially promising for integrating fungi into the full microbiome and 
broader ecosystem functioning context, recovery of novel fungal lineages and ancient 
organisms as well as barcoding of old specimens including type material.
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Common uses included species- and genus-level identification, anal-
ysis of cryptic species, and phylogenetic assessment of major fun-
gal clades as well as the kingdom Fungi at large (Gherbawy & Voigt, 
2010). Later on, the identification of multiple fungi from more di-
verse substrates, including soil, plant roots and water became pos-
sible by including a cloning step of amplicons prior to sequencing. 
However, these studies usually operated with tens to low hundreds 
of reads, rarely numbering in the thousands required to properly 
estimate fungal diversity in soils (Taylor et al., 2014). Accordingly, 
sequences and operational taxonomic units (OTUs) were usually 
handled manually or using specific programs, with no urgent need 
for bioinformatics tools.

The development of high-throughput sequencing (HTS) methods 
such as 454 pyrosequencing (454 Inc., obsolete), Illumina sequenc-
ing (Illumina Inc., www.illum​ina.com) and Ion Torrent (Thermo Fisher 
Scientific Inc., www.therm​ofish​er.com) transformed fungal identi-
fication capacity in the 2000s (Jumpponen & Jones, 2009). These 
so-called next- or second-generation HTS methods increased the 
sequencing capacity by 2–6 orders of magnitude and the number 
of simultaneously processable samples by 1–2 orders of magnitude. 
These metabarcoding methods (cf. Taberlet et al., 2012) enabled 
estimating fungal diversity exhaustively from environmental DNA 
(eDNA) on an individual sample scale as well as facilitating global-
scale comparisons (Sun et al., 2021; Tedersoo et al., 2014). Yet, these 
second-generation platforms as well as the more recent DNA nano-
ball sequencing (DNBseq; MGI-Tech Inc., www.mgite​ch.com) were 
only able to sequence short (<550 bases) fragments of the genetic 
markers, resulting in the loss of taxonomic resolution and phyloge-
netic information as well as difficulties in identifying technical arte-
facts compared with longer Sanger reads.

In the 2010s, long-read, third-generation HTS platforms such 
as PacBio single-molecule real-time (SMRT) sequencing (Pacific 
BioSciences Inc., www.pacbio.com) and nanopore sequencing 
(Oxford Nanopore Technologies Inc., https://nanop​orete​ch.com) 
were introduced (van Dijk et al., 2019). Due to their low sequencing 
depth (tens of thousands of reads in total, resulting in only hundreds 
rather than thousands of reads per sample) and high raw error rates 
(12–20%), these methods could not initially compete with short-read 
HTS platforms. However, both technologies made a great leap for-
ward in 2020 when PacBio Sequel II instruments became broadly 
available and new solutions were developed to greatly reduce error 
rates in nanopore sequencing (Karst et al., 2021; Tedersoo et al., 
2021). These long-read technologies and synthetic long reads pro-
vide high-quality sequence data for up to 3.5 kb amplicons, which 
enables bridging variable and conserved fragments of one or more 
genes in a single sequencing round as well as resolving alleles and 
haplotypes (Callahan et al., 2021; Tedersoo, Albertsen, et al., 2021).

Along with the rapid development of HTS methods, bioinfor-
matic platforms and analytical resources evolved to match the 
computational needs imposed by large data sets. Metabarcoding ap-
proaches have been extensively reviewed in several recent studies 
with a focus on their conceptual foundation (Taberlet et al., 2018), 
pathogenic organisms (Piombo et al., 2021; Tedersoo et al., 2019), 

applications in mycology (Lindahl et al., 2013; Nilsson et al., 2018), 
eukaryotes more broadly (Ruppert et al., 2019) as well as overall ex-
perimental planning (Zinger, Bonin, et al., 2019), trade-offs among 
technology generations (Kennedy et al., 2018; Loit et al., 2019) and 
analytical pitfalls (Cristescu & Hebert, 2018; Halwachs et al., 2017). 
Here, we provide a review of available methods and propose best 
practices for designing and performing studies using metabarcod-
ing in fungi. We also compare the performance of several popular 
methods developed for bacteria or animals to assess their suitability 
for fungi. The vast majority of our recommendations are relevant to 
prokaryotes, protists and metazoans alike.

2  |  PL ANNING A METABARCODING 
STUDY

To test scientific hypotheses, researchers should first consider 
a proper methodological experimental design – either observa-
tional, experimental or combined – including technical, analytical, 
personnel-related and financial requirements. Experimental designs 
of broad representativeness (e.g., geographical and ecological scope) 
and independence of replicates (i.e., no spatiotemporal autocorre-
lation) are strongly recommended (Gotelli & Ellison, 2013; Zinger, 
Bonin, et al., 2019). Indeed, metabarcoding studies do not differ 
from traditional ecological studies, in which the number and distri-
bution of study sites must be defined appropriately depending on 
the initial question (Dickie et al., 2018). Additionally, metabarcoding 
studies require an optimal number of local, biological replicates that 
can be determined based on the variance reported in previous stud-
ies (Alteio et al., 2021) or pilot experiments. Intuitively, more repli-
cates will be required when any expected ecological differences are 
relatively small or when the studied location exhibits strong spatial 
or environmental heterogeneity. Sometimes, pooling individual en-
vironmental samples is useful for studies covering larger geographic 
scales (Box 1).

The size of individual environmental samples should be large 
enough to secure enough material for DNA extraction and poten-
tial physicochemical analysis (e.g., pH and C/N ratio). It is also im-
portant to consider the amount of material from the perspectives 
of pretreatment and storage. Too much material will be difficult to 
mix, dry or freeze – and will prove costly to preserve in a buffer. To 
ensure statistical independence of samples within a site, samples 
should be located from outside the spatial autocorrelation range, 
which is typically 5–10  m in soil fungi (Bahram et al., 2013) and 
corresponds to the near-maximum size of most macrofungal indi-
viduals (Douhan et al., 2011). In aquatic habitats, communities are 
likely to compositionally autocorrelate for even larger distances 
(Matsuoka et al., 2019). When assessing diversity patterns along 
ecological gradients, transects (e.g., latitudinal, altitudinal and sa-
linity gradients) should be replicated. Spatial independence should 
also be ascertained for plots and treatments. In field and labo-
ratory experiments, this is best achieved by a randomized block 
design (Legendre & Legendre, 2012). A stratified block design may 
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be important in environments with known heterogeneity. It is ad-
visable to collect samples in as short a time period as possible to 
avoid seasonal and weather effects such as freeze-thaw cycles 
and rainfall after a long dry period (for soil and leaves) that may 
cause rapid turnover of microbes and degradation of their DNA 

by moulds. All sampling locations (including positions in controlled 
experiments) and sampling dates should be recorded precisely to 
permit controlling for spatiotemporal effects in the following sta-
tistical analyses (Bahram et al., 2015; Tedersoo, Anslan, Bahram, 
Drenkhan, et al., 2020).

BOX 1 Trade-offs in sample pooling

To improve representativeness of the samples at minimum extra cost, pooling statistically nonindependent subsamples is a widely 
used option. The number and spatial distance of subsamples may be of great importance to provide a representative view of the mi-
crobial diversity in heterogeneous habitats; less inclusive subsampling designs are likely to result in underestimating diversity (Figure 
Box 1). The number of subsamples to be pooled depends on the research question and the size of the area, with 7–25 being optimal in 
most cases (Schwarzenbach et al., 2007). Both physical and analytical pooling improve richness and composition assessments of soil 
fungi (Schwarzenbach et al., 2007; Song et al., 2015) and reduce estimated variance (Dickie et al., 2018). However, pooling of physical 
samples may result in the loss of patchily occurring rare taxa (e.g., in extremely dilute fish eDNA samples with a detection threshold of 
0.05% of total relative abundance at deep sequencing; Sato et al., 2017). These results may be relevant for fungal groups of relatively 
low DNA content and/or rRNA copy numbers, for example, Glomeromycota and unicellular taxa. It is likely that the pooling effect 
depends on habitat heterogeneity, including pH, organic matter content, salinity and plant species present - all of which are factors 
known to affect fungal composition in different environments (Amend et al., 2019; Grossart et al., 2019; Nilsson et al., 2019; U’Ren 
et al., 2019). Therefore, pooling samples with potentially different microbial composition (e.g., leaves of different plant species) is not 
recommended. Theoretically, pooling does not work optimally in situations where the samples contain different amounts of DNA 
and where the low-DNA samples feature unique, rare species. Given the greater overall richness, pooled samples also require deeper 
sequencing to detect rare taxa. Furthermore, pooling is unsuited for co-occurrence analyses assessing biotic interactions (Bahram 
et al., 2014). Pooling individual samples at the site level (at the phase of DNA extraction, PCR, library preparation or sequence data) 
may be the most useful when these samples cannot be used as independent replicates (local- or landscape-scale spatial autocorrela-
tion), for example, for regional- to global-scale analyses.

F I G U R E  B O X  1  Potential underestimation of biodiversity and high variance at low number of (sub)samples: (a) OTU richness, 
(b) Shannon index of diversity and (c) Effective number of species (q = 1; i.e., exponent of the Shannon index). Rarefied data sets 
(13,688 fungal ITS2 reads) from six sites (Zhou et al., 2016) were randomized 100 times to generate subsets of various sample sizes 
representing composite, analytically pooled samples. These samples were further rarefied at the same level for calculating diversity 
values. Note that the differences would be greater without rarefaction. Circles represent means of analytically pooled samples, and 
error bars indicate 95% CI. The differences between a single sample and 21 randomly selected samples average 104.1% (±20.7%), 
36.2% (±5.4%) and 269.6% (±69.1%) for (a), (b) and (c), respectively. We conclude that pooling information from around 10 samples 
per site is sufficient to distinguish richness patterns, but 〉20 samples are needed to capture 〉90% of fungal richness based on this 
sampling scheme
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3  |  SAMPLING AND STORING

We strongly recommend wearing disposable gloves during sampling 
to avoid contaminating samples with skin or forward microbiota. To 
reduce the risk of cross-contamination between independent sam-
ples in the field, sampling tools should be replaced or sterilized be-
tween sampling events with oxidizing agents (e.g., bleach; Fischer 
et al., 2016), DNase solutions or flame but not only with alcohols, as 
the latter do not denature DNA. Samples should be collected into 
clean containers such as paper bags (leaf and fruiting body material), 
plastic bags (roots, soil and sediments) or screw-cap vessels (soil, 
water and sediments). It is recommended to sample in the field dur-
ing dry weather to avoid contamination by water from rain and wet 
gloves. To enable removal of site or sampling material contaminants 
a posteriori, it is also recommended to include field controls (e.g., 
empty tubes left opened at the site or extraction of sample storage 
buffer) in the experiment (Zinger, Bonin, et al., 2019). Finally, it is 
important to limit the biological activity within samples post-harvest 
(i.e., growth of fast-growing molds), which can be done by maintain-
ing the samples at cold temperature during transport.

To obtain DNA of high quality, the best option is to either extract 
DNA right after sampling whenever possible or to rapidly freeze the 
collected materials in liquid nitrogen and maintain them at –80°C 
(U’Ren et al., 2014). Pooled subsamples should be well mixed before 
freezing, because it may subsequently be difficult to homogenize 
frozen material, which could lead to some parts of the sample or 
entire subsamples effectively being excluded from DNA extraction. 
When freezing, it is important to avoid thawing, which may lead to 
sample spoilage and significant changes in the detected commu-
nities (Anslan et al., 2021; Clasen et al., 2020). Long-term storage 
(2–4 weeks) at 4°C may alter soil fungal diversity (Delavaux et al., 
2020) and promote proliferation of moulds (Clasen et al., 2020). 
Rapid drying methods such as freeze drying and cabinet drying are 
alternatives to freezing to prevent DNA degradation (Castaño et al., 
2016). Drying with silica gel is a viable option for samples of a few 
grams (but see Guerrieri et al., 2021 for larger amounts) and will 
also work well for plant material such as thin leaves and fine roots. 
Importantly, liquid preservatives such as cetyltrimethylammonium 
bromide (CTAB), ethanol and specific DNA/RNA preservation solu-
tions perform poorly for above-gram samples (e.g. Delavaux et al., 
2020; Zaiko et al., 2022). Nevertheless, Longmire buffer (100 mm 
Tris, 100  mm ethylenediaminetetraacetic acid, 10  mm NaCl, 0.5% 
sodium dodecyl sulphate, 0.2% sodium azide; 1:1 vol/vol) works well 
for sediment and water samples, in which DNA otherwise would de-
grade very rapidly (Kumar et al., 2020). Dried material and samples 
fixed in buffers can be kept in the dark at room temperature. Samples 
can be stored long-term (decades) if kept air-tight in the dark and at 
constant temperature (Wang et al., 2021). It is also essential to store 
DNA samples, preferably in frozen or lyophilised form, for potential 
subsequent quality check, reanalyses for other research purposes 
or simply for a reanalysis using more sophisticated HTS methods 
in temporal studies (Jarman et al., 2018). Drying or lyophilisation is 
essential for pooled samples of coarse fragmented materials (e.g., 

wood chips and plant litter), which require grinding for adequate 
mixing.

4  |  MOLECUL AR ANALYSIS

4.1  |  DNA extraction

Prior to DNA extraction, it is important to homogenise the mate-
rial by using bead beating in microcentrifuge tubes, or a mortar and 
pestle or micropestles or knife mill for small sample numbers. The 
required amount of material should be weighted to the DNA extrac-
tion tube and the rest could be stored for backup or for example sta-
ble isotopes or chemistry analyses. It is usually undesirable to reach 
the full capacity of the DNA extraction kit, because several types 
of samples (e.g., peat soils, dead wood, debris-rich sediments and 
fleshy plant tissues) may absorb the liquid, or inhibitors may be co-
extracted. For well-homogenised soil samples, there are only minor 
differences in perceived richness when using DNA extracts from 
0.25, 1 or 10 g material (Song et al., 2015), but increasing the volume 
through replicate extractions or through more material using “maxi” 
kits provides more reproducible estimates (Dickie et al., 2018). It is 
crucial to perform weighing and DNA extraction under a dedicated 
laminar flow in a room separated from the PCR laboratory to avoid 
cross-contamination and air contamination by amplicons. Such po-
tential contaminants can also be detected and removed in down-
stream analyses through analysis of blank DNA extraction controls.

For DNA extraction, we recommend following the protocols 
elaborated for relevant substrates, either manual methods or com-
mercial kits. The CTAB and phenol-chloroform protocols (multiple 
variants exist) are the most broadly used manual methods for ob-
taining large quantities of long DNA molecules. While the quantity 
of DNA from the aforementioned protocols is usually relatively large, 
it is often less pure than kit-based approaches and so may require 
further dilution ahead of PCR to minimize the effect of inhibitors 
present in the sample (see below). Because of functional limitations 
in DNA extraction robots, the DNA purity and yield obtained with 
these protocols tend to be lower than with analogous nonrobot kits. 
As a rule of thumb, both commercial nonrobot and robot-based kits 
are roughly two and five times more time-efficient, but 2–10 times 
more costly compared with manual protocols.

Depending on the sample type and extraction method, the DNA 
may contain impurities that inhibit PCR amplification. These can be 
overcome by pretreatment of samples during DNA extraction (e.g., 
Al3+ or Ca2+ flocculation of humic substances; Braid et al., 2003), pu-
rification using specific kits (e.g., polyvinylpolypyrrolidone spin col-
umns against humic and fulvic acids in soil; universal Zymo Research 
OneStep PCR Inhibitor Removal Kit or Macherey-Nagel NucleoSpin 
Inhibitor Removal Kit against polyphenolics, humic and fulvic acids, 
tannins and melanin) or equipment (e.g., SCODA electrophoresis), 
or precipitation with ethanol. Importantly, under most conditions, 
dilution of the DNA extracts may be sufficient to eliminate PCR in-
hibition (Wang et al., 2017). DNA concentrations can be increased 
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by precipitation with ethanol, salts (e.g., sodium acetate) and carri-
ers (e.g., Pellet Paint Co-Precipitant, glycogen or linear polyacryl-
amide). If the DNA extract contains a large proportion of short 
fragments (e.g., degraded DNA due to poorly preserved samples or 
extracellular DNA) that hamper amplification and may promote chi-
mera formation, these can be removed by elution using specific kits 
such as AMPure (Beckman Coulter Inc., www.beckm​an.com) and 
ProNex (Promega Corp., www.prome​ga.com). Extracellular DNA 
may account for 80% of total DNA, but it has little effect on esti-
mates of diversity, as it comes from active populations (Nagler et al., 
2018) and the dead cells of indigenous biota (Lennon et al., 2018). 
However, it is crucial to remove extracellular DNA for time series 
and co-occurrence analyses on a microscale (Lennon et al., 2018), 
which can be performed by sample treatment with ethidium or 
propidium monoazide (Wagner et al., 2008). Substrates destined for 
mesh-bag experiments (plant litter, wood) can be relieved from un-
necessary microbial DNA with gamma-irradiation (Brabcova et al., 
2016) or dry heating at >120°C before exposure.

4.2  |  Control samples

Negative controls for sampling, DNA extraction and PCR, and posi-
tive controls (including mock communities) improve scientific repro-
ducibility by offering means by which to estimate the accuracy of 
the analyses (reviewed in Zinger, Bonin, et al., 2019). Negative and 
positive controls inform about external and cross-contamination as 
well as potential index-switching (Carlsen et al., 2012; Esling et al., 
2015). Mock community analysis provides additional insights into 
the qualitative (i.e., estimation of PCR/sequencing error rates) and 
quantitative capacity (i.e., biased amplification) to recover the origi-
nal diversity. Positive controls and mock communities may consist 
of artificial synthesised molecules or DNA extracts of actual species 
known not to occur in the experimental system (Ihrmark et al., 2012; 
Song et al., 2015). A sophisticated mock community should com-
prise >10 species with variable G+C content, amplicon length and 
quantity based on actual marker copy numbers. Additionally, due to 
index-switching issues, consideration of the specific species compo-
sition of the mock community is desirable. Specifically, if the mock 
community contains the same taxa present in the samples being 
analysed, it becomes impossible to determine whether any switched 

reads in the samples come from the mock community or not. One 
solution to this problem is to use a nonbiological mock community, 
containing multiple “species” that are synthetically constructed to 
have properties equivalent to biological species but that never are 
present in nature (Palmer et al., 2018). Mock community analyses 
commonly fail to recover all species and usually reveal more OTUs 
than the input because of variable DNA quality, PCR bias, trace con-
tamination, index-switching and occasional divergent haplotypes 
(Bakker, 2018; Ihrmark et al., 2012). Therefore, failing to recover the 
initial mock community does not necessarily indicate that the analy-
ses have failed, but it sheds light on potential biases and serves as 
a reference to correct the data through bioinformatics and/or post-
bioinformatic processing.

4.3  |  Genetic markers

Obtaining high-quality amplicons is one of the most important steps 
in metabarcoding analyses. This can be achieved by selecting a suit-
able genetic marker, polymerase, relevant primers and appropriate 
thermocycling conditions. Each PCR run requires a negative control 
to rapidly detect contamination.

The ITS region of the rRNA cistron is the most broadly used 
marker for fungi in both DNA barcoding and metabarcoding anal-
yses due to its multiple copy numbers, optimal species-level reso-
lution in most groups and the possibility to design both fungal and 
universal primers (Nilsson et al., 2018; Schoch et al., 2012). The ITS 
region is unsuited to target certain fungi such as Microsporidia (in-
tracellular animal parasites) that may lack this region and certain 
Tulasnellaceae (orchid root symbionts) that have mutations in primer 
sites (Rammitsu et al., 2021; Tedersoo et al., 2015). Furthermore, 
ITS sequences lack variability in some species in certain species-rich 
genera comprising pathogens and saprotrophs such as Trichoderma 
and Fusarium, and their analysis requires using additional taxonomic 
markers, typically protein-coding genes (Cai & Druzhinina, 2021; 
O’Donnell et al., 2015). The arbuscular mycorrhizal Glomeromycota 
have multinucleate hyphae with highly variable ITS copies, which has 
rendered the rRNA 28S and 18S gene fragments of broad use as well 
(Kolaříková et al., 2021).

Because of sequencing read length limits imposed by second-
generation HTS platforms, researchers have mostly focused on 

F I G U R E  1  Primer map of the rRNA operon internal transcribed spacer (ITS) region. Primers developed for metabarcoding studies 
are in bold; fungus-specific primers are underlined. Primers used for global mycobiome projects are indicated in red (all fungi), purple 
(Glomeromycota) and blue (Earth Microbiome project), common intron sites. Updated from Nilsson et al. (2018)

http://www.beckman.com
http://www.promega.com
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either the ITS1 or ITS2 subregion, which taken separately have lower 
taxonomic resolution and do not offer as suitable primer sites as the 
full region (Tedersoo, Albertsen, et al., 2021; Tedersoo et al., 2015). 
Systematic differences in rRNA gene copy numbers and amplicon 
length among fungal taxa, due to introns in both ITS subregions, 
may bias the overall quantitative estimates of major fungal groups 
(Lofgren et al., 2019; Tedersoo et al., 2015).

For metabarcoding, ecologists use mostly primers designed de-
cades ago for Sanger sequencing analyses (Figure 1; White et al., 
1990). These original primers are not optimal for the many fungal 
groups that have one or more primer-template mismatches. They can 
be improved by adding degenerate positions to minimise primer bias 
(Tedersoo & Lindahl, 2016) and promote quantitative performance 
(Pinol et al., 2019). However, multiple degeneracies may require al-
tering the 1:1 ratio of primers and may require extra PCR cycles, be-
cause not all primer variants match to templates. The broadly used 
fungus-specific forward primer ITS1F is particularly problematic be-
cause of several critical mismatches in certain groups of moulds and 
putative animal pathogens (Tedersoo & Lindahl, 2016). Researchers 
should also consider the common presence of an intron at the end 
of 18S rRNA gene, which prevents sequencing of the taxa with this 
intron (Figure 1). It may be important to pair primers with similar 
melting temperatures to attain optimal performance.

There are different amplicon library preparation strategies that 
require consideration during the primer design step (Figure 2). The 
metabarcoding primers may be equipped with both sample-specific 
index and platform-specific adapters for sequencing. The alternative 
strategy is to use shorter primers with only sample-specific indexes, 
which are c. 30–40% cheaper and easier to amplify but require 
specific library preparation depending on the sequencing platform. 
Approaches requiring several PCR steps are also available (Figure 2; 
Bohmann et al., 2022), but these are more prone to contamination 
and chimera formation. Although vulnerable to contamination, 
the use of combinations of Illumina flow cell indices in the second 
PCR step enables ultra-high multiplexing of samples without index-
switching bias (Holm et al., 2020).

The sample-specific indexes are typically 6–14 bases in length 
and differ from each other by at least four nucleotides (including 

indels) for error correction (Buschmann & Bystrykh, 2013). Their 
GC content should be in the range of 25–75% and homopolymers 
>2 nucleotides should be avoided. An example of >300 indexes is 
listed in Taberlet et al. (2018). To reduce amplification biases, there 
should be a 2–3-base linker between the index and PCR primer, 
which should not align to any of the targeted sequences. The quality 
of Illumina sequencing benefits from heterogeneity spacers added 
to the indexes (Figure 2; Fadrosh et al., 2014). To secure more equal 
library preparation, indexes should start with the same nucleotide. 
The same indexes (but not linkers) can be used with multiple prim-
ers, but each primer-index combination should be tested for hairpin 
structure formation in silico. Indexing both primers with unique tags 
(i.e., unique dual indexing) is more expensive, but allows users to 
greatly reduce index-switching artefacts (Schnell et al., 2015), and is 
therefore strongly recommended.

4.4  |  Polymerases

With respect to DNA polymerases, proofreading polymerases have 
much-reduced error rates and therefore result in fewer spurious 
OTUs (Bakker, 2018; Oliver et al., 2015). The 3′ to 5′ exonuclease 
activity of proofreading polymerases performs primer editing in 
the last 4–6 nucleotide positions, reducing primer bias (Gohl et al., 
2021). However, this activity varies by polymerase, the mismatch-
ing nucleotide and probably concentration of inhibitors (Gohl et al., 
2021), and the effect on multiple near-terminal mismatches remains 
unexplored. Hence, proofreading polymerases may also strongly 
reduce the specificity of taxon-specific primers. Furthermore, the 
exonuclease activity of proof-reading polymerases creates multiple 
short fragments, especially at low ddNTP concentration and pro-
longs elongation times, which may result in more chimeras already 
at early stages of the PCR process (Ahn et al., 2012). For longer 
amplicons, it is crucial to select high-fidelity polymerases to secure 
amplification completion and hence reduce production of chimeric 
artefacts (Heeger et al., 2018). Thus, a wise selection of primers and 
polymerases allows researchers to obtain the same amount of high-
quality data with lower sequencing depth.

F I G U R E  2  Common and perspective library preparation strategies for Illumina sequencing: (a) adding indexes and adapters using 
amplification with fusion primers, (b) adding indexes with amplification and adapters by ligation, (c) amplification and then adding indexes 
and adapters in second PCR step, (d) indexing samples with combinations of Illumina indices (Holm et al., 2020), and (e) incorporating unique 
molecular identifiers (UMIs) in the first amplification step (modification of Karst et al., 2021). Libraries of other HTS platforms require more 
specific protocols

(a) (b) (c) (d) (e)
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4.5  |  Thermal cycling conditions

Regarding PCR conditions, reducing annealing temperature may 
promote amplification of targeted taxa that have one or more 
primer-template mismatches, but it may also enhance nonspecific 
priming, resulting in amplification of random genomic fragments or 
untargeted taxa. The number of PCR cycles should be kept at below 
30 – optimally resulting in a weak band on a gel – to minimize for-
mation of chimeric molecules and distorting relative abundances 
(D’Amore et al., 2016; Gohl et al., 2016; Lindahl et al., 2013). Rather 
than losing samples with no visible amplicons, it is advised to add a 
few extra cycles to problematic samples, but users should keep in 
mind that these low-input or inhibitor-rich samples have elevated 
risk of contamination or biased diversity patterns (Eisenhofer et al., 
2019). Adding bovine serum albumin (BSA) may be useful for improv-
ing amplification success but distort the retrieved community (Zaiko 
et al., 2022). Thus, the impacts of newly designed specific primers, 
polymerases, blocking oligonucleotides (cf. Vestheim et al., 2011), 
stabilisers and altered thermal cycling conditions on community 
composition should be carefully tested to avoid potential biases.

Biological samples may differ several orders of magnitude in 
their DNA content, quality and abundance of inhibitors. For PCR, 
the DNA content is rarely equalised, because typically 80–99% of 
eDNA is nonfungal, and the fungal fraction may vary significantly 
across samples (Bahram et al., 2018; Tedersoo et al., 2015). There 
is no consensus on whether or how the DNA quantity should be 
standardised, although diluted samples may yield a higher propor-
tion of contaminants (Lindahl et al., 2013) as well as relatively lower 
diversity and greater variability (Castle et al., 2018, but see Song 
et al., 2015 and Wang et al., 2017). Therefore, at least two PCR 
replicates are needed to account for the stochasticity. Such tech-
nical replicates can be pooled for further analysis steps (Alberdi 
et al., 2018; Lindahl et al., 2013), but this pooling step will prevent 
evaluation of the PCR replication and exclusion of dysfunctional 
amplicons (Taberlet et al., 2018).

4.6  |  Alternatives to traditional eDNA amplicon-
based methods

To focus on the active community, RNA instead of DNA can be used 
as a target for sequencing (Singer et al., 2017, but see Blazewicz 
et al., 2013 for limitations). One option is to amplify reverse tran-
scribed cDNA, which is also applicable for ITS sequences in spite 
of the short life of precursor RNA (Rajala et al., 2011). Interestingly, 
cDNA-based HTS reveals multiple taxa not recovered using DNA 
and vice versa (Rajala et al., 2011). Another option is direct RNA 
sequencing, which is currently provided only by Oxford Nanopore 
Technology (ONT; Garalde et al., 2018). Both methods produce 
more errors than state-of-the-art DNA-based methods. As both 
PacBio and ONT sequencing make it possible to record modified 
nucleotides with various methylations, it may be possible to record 

various artificial nucleotide analogues (e.g., 3-bromo-deoxyuridine) 
incorporated into DNA in real time (Georgieva et al., 2020; Hanson 
et al., 2008). Stable isotope probing (SIP) is widely used for bacteria 
because of their rapid metabolism of 13C-enriched substrates (Berry 
& Loy, 2018), but it has been little used in mycology (but see Hannula 
et al., 2017; Lopez-Mondejar et al., 2020). RNA-based SIP applica-
tions may offer more promise in fungi than for bacteria (Ghori et al., 
2015; Singer et al., 2017).

Metagenomics and metatranscriptomics can be used for large-
scale identification of organisms. These methods are free from PCR 
biases but may be affected by library preparation biases and add an 
order of magnitude to the costs (Quince et al., 2017; Singer et al., 
2017). While these methods work reasonably well on bacteria and 
viruses with small and densely packed genomes and for which a rich 
set of reference genomes are available, analyses of fungi and other 
eukaryotes are heavily biased because of highly different genome 
sizes, number of rRNA gene copies and the striking lack of reference 
genomes for many important groups (Geisen et al., 2015; Tedersoo 
et al., 2015). This may change very soon by activities of the ongoing 
Earth Biogenome project (Lewin et al., 2022) and the use of taxo-
nomically more informative long reads for reference (Simmons et al., 
2020). Furthermore, DNA/RNA quantity combined with metage-
nomic or metatranscriptomic information enables to quantify the 
biomass and potential functionality of different microbial groups 
(Bahram et al., 2018; Žifčáková et al., 2016). Alternatively, a spike-in 
method can be used for biomass estimates. This method relies on 
adding artificial molecules or cells (known amount) of one or pref-
erably more species (absent from biological samples) before DNA 
extraction (Palmer et al., 2018; Rao et al., 2021), and quantification 
based on the proportions of reads.

4.7  |  DNA library preparation

Among-sample variability of amplicon quantity is high at a low num-
ber of PCR cycles. Therefore, the amounts of amplicons should be 
standardised for improved comparability of sequencing depths. This 
is most efficiently achieved by DNA capture on a solid phase with 
limited binding capacity (SequalPrep, Thermo Fisher Technologies; 
Harris et al., 2010).

The equimolarly pooled samples are subjected to library prepa-
ration using HTS platform-specific kits. Aside from multiple kits for 
Illumina, those free from amplification steps and biases of G+C con-
tent and fragment length are recommended (Bowers et al., 2015; 
Sato et al., 2019). Amplicons produced by different primers, even 
when of similar length, should not be mixed into the same library be-
cause of great differences in yield (Tedersoo et al., 2015), but it will 
add to library preparation costs. In-house library preparation may 
be up to 5-fold cheaper compared to commercial services. For small 
laboratories, it is advisable to order the library preparation service 
from a sequencing company to avoid contamination and reduce the 
risk of sequencing failure.
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4.8  |  Sequencing platforms

For metabarcoding, both the second-generation and third-
generation platforms can be considered. Currently, the second-
generation platforms allow sequencing up to c. 550-base markers, 
but their throughput exceeds that of third-generation platforms 
by 1–2 orders of magnitude and their costs per base are at least an 
order of magnitude lower. Given their relative accuracy, Illumina 
(HiSeq and NovaSeq instruments in 2 × 250 paired-end mode and 
MiSeq) and MGI-Tech (DNBSEQ-G400RS in 2 × 200 paired-end 
mode) are best suited for analyses of short barcodes such as ITS1, 
ITS2 or one or two variable regions combined within the 18S and 
28S rRNA genes (Tedersoo, Albertsen, et al., 2021).

The average raw read length of PacBio and ONT instruments 
exceeds 20  kb. The libraries of PacBio consist of circularised am-
plicons, which are sequenced multiple times (circular consensus 
sequencing; CCS) such that error rates decrease from 10–15% to 
<0.1% at >10-fold consensus. This allows high-quality sequencing 
of up to 3.5 kb fragments that cover multiple rRNA markers. Such 
long reads offer much improved taxonomic resolution and allow rig-
orous phylogenetic analyses based on reasonably long alignments of 
conserved regions (Simmons et al., 2020). Furthermore, random PCR 
and sequencing errors are typically ironed out during the clustering 
process (Tedersoo et al., 2018), and much of the relatively more de-
graded extracellular DNA is excluded.

Currently, ONT sequencing does not offer sufficient read 
quality for metabarcoding. Although unique molecular identifi-
ers (UMIs) can be used in the generation of consensus sequences 
(Figure 2e; Karst et al., 2021), obtaining at least 20-fold consen-
sus will reduce throughput and increase the overall cost tremen-
dously. UMIs can also be used for producing synthetic long reads 
using any of the short-read platforms, which results in principally 
error-free long reads (Callahan et al., 2021). However, a new com-
mercial LoopSeq service provided by Loop Genomics, Inc. (www.
loopg​enomi​cs.com) is relatively costly (43–100 USD/sample) 
and requires validation for eukaryote studies. Taken together, 
the choice of HTS strategy depends on expected data quality, 
number of samples included, desired sequencing depth and am-
plicon length as well as available financial resources (Tedersoo, 
Albertsen, et al., 2021).

5  |  BIOINFORMATIC DATA ANALYSIS

5.1  |  Quality-filtering

The raw output of sequencing instruments is converted to the fastq 
format, which is compatible with all major quality-filtering tools. As 
most bioinformatic platforms have been developed for bacterial 16S 
data, these differ greatly in their capacity to handle fungal ITS se-
quences, which typically cannot be reliably aligned much beyond the 
genus level (Anslan et al., 2018). Based on citations, the most broadly 
used platforms include QIIME2, mothur, PIPITS, SEED2, SCATA and 

PipeCraft. Features as well as pros and cons of the most popular and 
recently developed platforms are presented in Table 1.

For Illumina and MGI-Tech instruments that produce paired-end 
reads, it is recommended to assemble these paired reads, unless the 
amplicon is longer than the paired reads combined (e.g., Bissett et al., 
2016). Generally, it is advisable to disregard unpaired reads because 
of the risk of low read quality in their distal end.

A universal step of quality-filtering includes demultiplexing, 
trimming primer and index sequences, and removal of low-quality 
and nontarget reads. Any ambiguous nucleotides and mismatches to 
indexes or primers are indicative of potentially low read quality and 
these reads could be excluded. Dual-indexed reads with mismatch-
ing pairs or a missing index from one primer are indicative of index 
switching and compromised sequence data, respectively. The size of 
full-length ITS ranges from 250 (some Saccharomycetales) to around 
1500 bases (e.g., some Cantharellales and various unicellular groups), 
but Microsporidea may have only a few bases of rudimentary ITS se-
quences. The ITS1 and ITS2 subregions taken separately vary from 
50 to around 1000 bases. There is also great length variation in 18S 
and 28S rRNA genes, which is mostly ascribed to introns.

Some 16S-based workflows recommend removal of homopoly-
mers >6 bases (e.g., default in QIIME2), but the ITS region of many 
fungal and other eukaryotic taxa commonly harbour homopolymers 
exceeding 10 bases. Hence, homopolymer length must not be used 
as an indicator in quality-filtering for ITS sequences and other non-
coding regions.

For ITS metabarcoding, it is important to remove the flanking 
18S and 28S rRNA genes, because these conserved ends display no 
species-level resolution and random errors in these regions compli-
cate clustering (Lindahl et al., 2013). Furthermore, chimeric break-
points may be common in these regions but are nearly impossible 
to recognize from such short, 10–70-base fragments. ITS extraction 
can be performed using ITSx (Bengtsson-Palme et al., 2013) or 
ITSxpress (Rivers et al., 2018) that cut out ITS1, ITS2 and full-length 
ITS region based on kingdom-wide Hidden Markov Models (HMMs); 
ITSxpress is several times faster than ITSx (Rivers et al., 2018).

Chimeric molecules are mainly generated in the excessive cycles 
of PCR and are therefore nearly always less abundant than their par-
ent molecules (Sze & Schloss, 2019). They are usually represented by 
singletons and doubletons restricted to a single sample (Tedersoo, 
Mikryukov, et al., 2021). There are multiple algorithms for chimera 
detection, of which UCHIME (Edgar et al., 2011) is by far the most 
universal and widely used. It is recommended to perform chimera fil-
tering both in de novo and reference-based modes, which compare 
OTUs against each other (in ranked abundance within a sample) and 
against a reference database (e.g., UNITE), respectively. According 
to our experience, a vast majority of reference-based chimeras are 
true chimeras, whereas c. half of the de novo chimeras may be false 
positives (Aas et al., 2017; Tedersoo, Mikryukov, et al., 2021). Not 
all chimeras are detected by the programs, so it may be advisable 
to remove all singletons or OTUs with <5 or <10 reads in the case 
of deep sequencing (Edgar, 2016). Chimeric molecules usually have 
only a partial match to the reference sequence (coverage 55–98%) 

http://www.loopgenomics.com
http://www.loopgenomics.com
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at high sequence similarity (>90%), which allows additional manual 
detection of rare, potentially artefactual OTUs.

Index-switches (also known as tag-switches, index-jumping and 
index cross-talk) are the most deleterious phenomenon in HTS data, 

because they result in technical cross-contamination among samples 
and may blur especially patterns in host specificity, taxon networks 
and biogeographical patterns (Calderon-Sanou et al., 2020; Carlsen 
et al., 2012). Index switches occur during PCR, T4 blunt-ending and 

BOX 2 Exact sequence variant (ESV) methods

ESV approaches represent a specific type of greedy de novo clustering and rigorous removal of noise and rare haplotypes (Callahan 
et al., 2017) to calculate essentially 100%-similarity OTUs. Several alternative methods - notably DADA2, UNOISE and deblur – have 
recently become popular in microbiology including fungal ecology (Glassman & Martiny, 2018). In DADA2, sample-wise rare variants 
are assigned to dominant haplotypes based on a Poisson error model for quality score and nucleotide transition model combina-
tion (Callahan et al., 2016). UNOISE performs a similar process less stringently by ignoring quality scores (Edgar, 2016). Deblur uses 
sequencing error profiles and is relatively less conservative than the other methods (Amir et al., 2017), but it requires equal length 
of amplicons and cannot be therefore used for ITS marker-based analysis. The ESV approaches are certainly useful for separating as 
many species/haplotypes as possible based on conserved genes, but their utility for ITS and protein-coding genes is unclear (Antich 
et al., 2021). They may outperform traditional OTU clustering approaches in distinguishing very closely related species of Ascomycota 
with haploid genomes. However, an ESV approach severely biased species richness estimates of metazoans based on the cytochrome 
oxidase 1 (CO1) gene (Antich et al., 2021; Brandt et al., 2021), and it is expected to perform poorly for fungal groups with dikary-
otic (Basidiomycota), diploid (most unicellular groups) or polyploid (Glomeromycota) genomes that commonly exhibit two or multiple 
different rRNA gene and ITS copies per genome or even within haploid nuclei (Egan et al., 2018; Lindner et al., 2013; Runnel et al., 
2022). Estensmo et al. (2021) demonstrated that in polypores, single species contained multiple ESVs. By reanalysing a data set from 
Furneaux et al. (2021), we show that the DADA2 ITS pipeline and UNOISE ESV approaches reduce phylogenetic richness by dis-
proportionately eliminating rare members of the unicellular fungal groups, Glomeromycota and nonfungal eukaryotes (Figure Box 2). 
In terms of community composition, the results are similar between ESV and OTU-based approaches (Glassman & Martiny, 2018; 
Porter & Hajibabaei, 2020), because these are driven by abundant taxa. We conclude that ESV approaches overestimate richness of 
common fungal species (due to haplotype variation) but underestimate richness of rare species (by removing rare variants; see also 
Joos et al. 2020). ESV approaches can nevertheless be useful for studying allele or haplotype distribution of various common species 
based on eDNA (Zizka et al., 2020).

(a) (b) (c)

(d)
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cross-pairing of amplicons from different libraries, and they are 
known from all sequencing platforms (Carøe & Bohmann, 2020; 
Schnell et al., 2015). Careful indexing of samples ameliorates this 
issue, but roughly 0.01–0.1% of obvious switches will remain. Index-
switches can be assessed with an ad hoc score using the UNCROSS 
algorithm (Edgar, 2018), the unspread python script (Larsson et al., 
2018), by tracking nonbiological spike-ins (Palmer et al., 2018) or by 
a positive control sample. Based on the distribution of spike-ins or 
positive control in biological samples and vice versa, index-switch 
rates can be estimated. Sequence abundances below the index-
switching threshold are converted to zero. Index-switches and other 
contamination should be checked for each sequencing library sepa-
rately. It is also useful to estimate occurrence of taxa in pseudosam-
ples represented by unused indexes (see Taberlet et al., 2018; Zinger 
et al., 2021) to assess the proportion of index-switch-like artefacts 
resulting from mutations or primer impurities.

5.2  |  Clustering

Clustering is used for aggregating reads into OTUs based on 
user-defined sequence similarity thresholds, usually ranging from 
95% to 100% sequence similarity. Clustering methods differ by 
the means how sequences are aggregated into OTUs (reviewed 
in Lindahl et al., 2013; Taberlet et al., 2018), with single-linkage 
(reads grouped when any pairwise comparisons exceed the se-
quence similarity threshold), complete linkage (reads grouped 
when all pairwise comparisons exceed the threshold), average 
linkage (compromise between these methods) and greedy cluster-
ing algorithms (membership linked to distance from OTU centroid) 
recognised. Many algorithms are based on a global alignment 
or expect equal read length, and are thus unsuited for ITS data. 
Most algorithms enforce strict sequence similarity and coverage 
thresholds, but some allow relaxed overall similarity (e.g., swarm; 
Mahe et al., 2022) and do not consider end-gaps (indels in the end; 
e.g., SCATA, https://scata.mykop​at.slu.se). Some algorithms allow 
truncation of homopolymers (e.g., the algorithms implemented in 

SCATA and PipeCraft), which may be warranted for the PacBio, 
ONT and Ion Torrent platforms where indels in homopolymers are 
the most common sequencing errors. Notably, current version of 
the relaxed-similarity swarm algorithm performs differently for 
taxa with relatively short or long ITS markers, which makes it un-
suited for analyses of fungi at large, but it warrants testing for 
the capacity to distinguish amongst sister species and analytical 
errors at sequence similarities >98%.

Three types of clustering are commonly seen in metabarcoding 
efforts: open-reference, closed-reference and de novo clustering. 
In de novo clustering, the sequence data are clustered within the 
project. For closed-reference clustering and open-reference clus-
tering, a reference database is used, but only in the latter method, 
unique sequences are retained. Open-reference, abundance-
based greedy clustering or average clustering algorithms are rec-
ommended for generating the most stable OTUs by accounting for 
the taxonomic structure in the reference data (Cline et al., 2017; 
He et al., 2015).

Following studies in bacterial ecology and Sanger sequencing-
based mycorrhizal ecology, a sequence similarity threshold of 97% 
is most commonly used, especially for short reads. Other studies 
have found that 98% or 98.5% sequence similarity for greedy clus-
tering and single-linkage methods is a better compromise between 
sequencing errors and biological differences among closely related 
species and intraspecific variation (Kõljalg et al., 2013; Kyaschenko 
et al., 2017; Tedersoo et al., 2014). Yet, many closely related spe-
cies of ascomycete saprotrophs and pathogens differ by no or only 
a few bases in full-length ITS (e.g., O’Donnell et al., 2015). Based on 
18S rRNA gene sequences, ascomycete and basidiomycete species 
belonging to different orders may display identical or near-identical 
sequences, which render SSU unsuited for fungal DNA metabar-
coding at species level. However, unicellular fungal lineages and 
Glomeromycota display greater SSU variation, although species-level 
distinction in the latter group is not straightforward as most virtual 
taxa and morphospecies are >50 million years old (Bruns & Taylor, 
2016; Perez-Lamarque et al., 2020), which roughly corresponds to 
the age of genera in most other fungal groups. To improve taxonomic 

F I G U R E  B O X  2  Comparison of traditional OTU-based (OTU−s, singletons removed) and ESV-based approaches (DADA2 and 
UNOISE) for inferring taxonomic richness using the ITS2 subregion, full ITS region and ITS +28S based on the data set of Furneaux 
et al. (2021): (a) average number of reads retained; (b) richness of OTUs; (c) richness of fungal orders; and (d) kingdom and phylum-
level distribution of OTUs across the entire data set. In (d) letters indicate statistically significant differences among groups based 
on Scheffe PostHoc tests following sample-wise testing of log-ratio transformed proportions using three-way ANOVAs including 
sample (random blocking factor), marker length and analysis type: OTUs, OTUs without singletons (both: VSEARCH v.2.17.0, 98% 
sequence similarity threshold, following Tedersoo, Mikryukov, et al., 2021), DADA2 ESVs (v.1.20.0; default settings) and UNOISE3 
ESVs (implemented in LotuS2 v.2.18; default settings). Arrows indicate groups with greatest differences. We conclude that: (1) the 
ESV approaches recover lower proportions of non-Dikarya and nonfungal taxa compared with traditional approaches; (2) analyses 
based on the ITS2 region alone revealed a higher proportion of OTUs that could not be identified to a fungal phylum or eukaryote 
kingdom compared with longer marker fragments due to the lower amount of sequence data available for taxonomic assessment; 
and (3) longer markers had fewer sequences passing the quality control and revealed relatively more singletons, suggesting 
accumulation of artefacts across the entire 1500 base amplicon

https://scata.mykopat.slu.se


2780  |    TEDERSOO et al.

resolution and reproducibility of identified taxa, exact sequence 
variant (ESV; also referred to as amplicon sequence variant) ap-
proaches have been developed for inferring OTUs (Box 2).

5.3  |  Taxonomic assignments

A representative sequence is chosen from each OTU for taxonomic 
annotation. Most programs select one of the longest sequences, 
the consensus sequence or the most common sequence type for 
comparison to the reference corpus. In most cases, the latter is bio-
logically the most meaningful. The longest sequence may contain 
artefactual insertions, untrimmed fragments of flanking genes or 
represent an unrecognised chimera. Consensus sequences are prone 
to lending voice to rare and perhaps compromised sequence data.

There are different approaches for taxonomic assignments, all of 
which require a well-curated reference database. The most common 
approach is custom BLAST searches (Camacho et al., 2009), where all 
representative sequences are compared pairwise to sequences in the 
reference database. Users can specify BLAST parameters from slow 
and stringent to rapid and discontinuous alignment. We recommend 
using word size <10 to be able to obtain long query-to-template align-
ments and hence the most precise estimates of e-value and sequence 
similarity. Alternative to BLAST, programs performing k-mer search 
such as Naïve Bayesian classifier (Porras-Alfaro et al., 2014; Wang 
et al., 2007) and SINTAX (Edgar, 2016) are up to 100-fold faster. These 
methods and the alignment-based PROTAX-Fungi (Abarenkov et al., 
2018) offer probabilistic estimates for taxonomic precision. Kraken2 
retrieves the lowest common ancestor for metabarcoding and metag-
enomics data based on multiple best hits (Wood et al., 2019). These 
algorithms work well in situations where reference data are abundant 
and accurately identified to species hypothesis or genus level, which 
is a somewhat atypical situation in the fungal kingdom (Lücking et al., 
2021). Phylogenetic placement algorithms such as EPA-ng (Barbera 
et al., 2019) map rRNA gene-based OTUs to pre-established phylog-
enies, but these methods are not suited for the ITS region due to its 
hypervariability in both length and composition, and issues with com-
putational speed. Some pipelines (e.g., AMPtk; Palmer et al., 2018) 
return taxonomic assessments based on results from multiple algo-
rithms. While often slightly more conservative, this approach gives 
greater confidence in the assigned taxonomy when there is clear 
congruence across different algorithms. If the samples include many 
undescribed/unbarcoded species, we recommend relying on BLAST 
search against the UNITE database, focusing on the 5–10 best hits. 
Based on multiple global data sets, we have developed recommended 
taxon-specific e-values and sequence similarity thresholds for 18S-
V9, ITS2 and full-ITS reads at the level of genera to phyla (Tedersoo 
et al., 2014; Tedersoo, Mikryukov, et al., 2021; updated in Table S1), 
but there are no automated ways of assigning these to OTUs. An im-
portant topic for future development is recognition of pseudogenes 
and nonfunctional rRNA gene variants in reference sequence data-
bases and HTS data sets to reduce the number of artefactual OTUs 
(Porter & Hajibabaei, 2021).

With respect to reference databases, UNITE is the largest by 
containing curated data obtained from the International Nucleotide 
Sequence Databases consortium (INSDc) as well as data submitted 
directly to UNITE (Nilsson et al., 2018). Furthermore, UNITE provides 
species hypotheses (SHs) for ITS-based OTUs of fungi and other eu-
karyotes to enable unambiguous doi-based cross-communication 
of taxa among studies and across time (Kõljalg et al., 2016, 2020). 
Another curated data set is the Warcup training set, which covers 
a smaller set of well-identified fungi of mostly plant-associated 
Ascomycota and Basidiomycota (Deshpande et al., 2016). We recom-
mend identification of fungal and other eukaryote ITS sequences 
based on the UNITE reference data set, because it is the largest cu-
rated database and it includes multiple nonfungal reads to facilitate 
separation of fungi from other eukaryotes (Anslan et al., 2018). We 
recommend the SILVA database for 18S and 28S rRNA gene reads 
(Quast et al., 2013), although their eukaryote taxonomy is outdated. 
For Glomeromycota 18S and 28S rRNA gene reads, MaarjAM (Öpik 
et al., 2010) and the AM-LSU pipeline (Delavaux et al., 2021) can be 
used, respectively.

5.4  |  Functional assignments

Functional assignments can be supplied directly to best-hitting refer-
ence sequences and species, genera and orders based on their iden-
tification. The FUNGuild database is largely focused on the genus 
level (occasionally on the species level) and provides functional as-
signment of lifestyle and life mode based on probabilistic estimates 
(Nguyen et al., 2016). The FungalTraits database is focused on genus 
and order-level functional estimates covering additional traits such 
as fruiting body and hymenium type and capacities of performing 
certain biotic functions (Põlme et al., 2020). FungalTraits also allows 
complementary trait estimates (geographic distribution, isolation 
source and mycorrhizal type) based on sequence accessions and 
SHs. The FunFun database includes a large number of genomic and 
enzymatic functional traits, but its taxonomic coverage is limited 
(Zanne et al., 2020). None of these databases should be taken as 
the golden truth, because infraspecific and infrageneric variation in 
fungal ecological traits are still poorly characterised.

From a functional perspective, we argue that it makes the most 
sense to analyse diversity at the level of all fungi and major func-
tional guilds such as ectomycorrhizal, arbuscular mycorrhizal and 
putatively plant pathogenic fungi. Phyla, classes and orders are of 
limited value, because functionality of fungi is mainly conserved at 
the level of genus and family (Zanne et al., 2020). However, there are 
many examples where saprotrophic species are congeneric with ec-
tomycorrhizal (e.g., Meliniomyces and Entoloma) or pathogenic (e.g., 
Gibberella and Dothiostroma) species. Yet, particularly orders and 
phyla are generally well-delimited and informative for understanding 
the phylogenetic structure. One notable challenge with functional 
assignments becomes apparent when individual taxa are matched to 
multiple ecological lifestyles (e.g., both saprotroph and endophyte). 
Lumping these taxa into a “multi-guild” category for ecological 
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analyses is not an effective solution; instead, it is recommended that 
users carefully analyse the associated primary literature for those 
taxa and determine, which functional type is most probably repre-
sented based on the study system or research question being ad-
dressed. This can be semiautomated using the PlutoF (Abarenkov 
et al., 2010) and Global Biotic Interactions (GloBI) databases (Poelen 
et al., 2014) or text mining software (Compson et al., 2018).

5.5  |  Curation of the OTU matrix

The LULU software can be used for assessing co-occurrences of 
closely related taxa in the OTU-by-sample matrix (Frøslev et al., 
2017). This program allows the removal of OTUs that potentially 
represent minority haplotypes of common OTUs and any remaining 
OTU-specific PCR and sequencing errors.

The OTU-by-sample matrix alone or tagged with sample meta-
data and taxonomic and functional annotation requires some man-
ual curation in a spreadsheet program. Although many functions can 
be performed by Python and Bash scripting, the process of check-
ing taxonomic annotations based on multiple best hits needs to be 
performed manually because the first hit may be incompletely an-
notated and curated reference databases still contain some misas-
signed data. Often, representative sequences require BLAST-based 
reanalysis against INSDc for taxonomic determination, more com-
plete functional annotation (Fernandez et al., 2017) or additional chi-
mera control using the graphic summary view (Nilsson et al., 2012). 
Manual BLAST examination of the 25–50 largest (most frequent or 
abundant) OTUs is a good way to identify compromised sequence 
data and to refine taxonomic annotation of OTUs.

Checking the distribution of sequences in control samples and 
spill-over of positive control in experimental samples is mostly manual 
work, but relevant functions are implemented in the metabaR R pack-
age and its associated tool vignette (Zinger et al., 2021). These steps 
are required to estimate the rate of index-switching and undertake 
appropriate measures. OTUs found in negative control samples should 
be assessed carefully, because these may be derived from molecu-
lar reagents, laboratory space or neighbouring samples (Eisenhofer 
et al., 2019; Loit et al., 2019). There are several programs for remov-
ing/subtracting contamination-affected OTUs from data cells (e.g. 
McKnight et al., 2019; Zinger et al., 2021). However, among-sample 
cross-contamination not affecting control samples (or if there are no 
controls) may be very difficult to find. Ranking OTUs by abundance 
and inspecting Spearman correlation matrices may be useful to de-
tect such cross-contamination. To ensure recognition of contaminants, 
sample-specific spike-in molecules inserted to extractable samples 
can be used and traced to reads (Lagerborg et al., 2021).

Rarefaction is a commonly used option to standardise an OTU ma-
trix to equal sequencing depth based on random subsampling of reads. 
Samples are typically rarefied to the lowest sequencing depth (after 
removal of failed or notably low-abundance samples), but there is no 
consensus whether the sequencing depth should reflect all reads, fun-
gal reads or reads of each functional group taken separately. The main 

issue with rarefaction is the substantial loss of data that often corre-
sponds to 90% of the sequencing depth, which may carry important 
information about diversity (McMurdie & Holmes, 2014). Rarefaction, 
especially to lower sequencing depths, provides relatively lower sta-
tistical power in the multivariate analyses as well (Figure 3; Martino 
et al., 2019). Another possibility is rarefaction to median sequencing 
depth (de Carcer et al., 2011) or model data using algorithms such 
as edgeR-TMM (Weiss et al., 2017). Another alternative to rarefying 
is scaling with ranked subsampling (SRS), which retains around 20% 
more OTUs (Beule & Karlovsky, 2020). Instead of rarefaction, we rec-
ommend accounting for the sequencing depth in models. However, 
some technical methodological comparisons and noncovariate models 
may still require rarefying.

6  |  STATISTIC AL DATA ANALYSES

6.1  |  Alpha diversity metrics

Most mycologists as well as plant and animal ecologists strive to ap-
proximate the species level in biodiversity analyses, because mac-
roscopic members of these groups can be well distinguished by 
morphology (Antich et al., 2021; Stajich et al., 2009). This contrasts to 
bacteria, where species are much more difficult to define. Molecular 
diversity of organisms has been traditionally studied using OTU rich-
ness as well as Shannon and Simpson indices and the related effective 
species numbers (Hill numbers; Alberdi & Gilbert, 2019; Chao et al., 
2014). Diversity indices down-weight the effect of rare OTUs and 
therefore only weakly correlate with sequencing depth. OTU richness 
has a cumulating function with sequencing depth that is particularly 
prominent in diverse, pooled samples. Unless rarefaction is performed, 
it is important to include square-root or log-transformed sequencing 
depth (whichever is more informative) as a covariate. In large data sets, 
log-transformation of fungal OTU richness accounting for sequenc-
ing depth yields better-explained statistical models compared with 
untransformed data, rarefied data and diversity indices (Tedersoo 
et al., 2022). We do not recommend OTU richness extrapolations (e.g., 
Chao1 and ACE) even though they are commonly used, because they 
rely on the number of the rarest OTUs, which are commonly artefac-
tual (Balint et al., 2016; Bunge et al., 2014).

Adding phylogenetic information to taxonomic composition elim-
inates the uncertainty regarding OTU calculations (Washburne et al., 
2018) and reduces the effect of any remaining PCR/sequencing errors 
in the data (Taberlet et al., 2018). The ITS region is not amenable to 
robust multiple alignments and phylogenetic reconstruction much be-
yond the genus level. Therefore, phylogenetic measures require infer-
ring phylogenetic distance matrices that may rely on ultrametric trees 
of conserved gene(s) (Davison et al., 2015; Horn et al., 2014), grafting 
phylogenies (Fouquier et al., 2016) or mapping of OTUs to distance-
weighted phylogenies (Perez-Izquierdo et al., 2019) or hierarchical tax-
onomic trees (Chalmandrier et al., 2019; Tedersoo, Sánchez-Ramírez, 
et al., 2018). We recommend analysis of the ITS region and flanking, 
phylogenetically informative 18S or 28S rRNA genes for species-level 
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identification and phylogenetic placement, respectively. Shifts in phy-
logenetic diversity can be studied using standardised phylogenetic 
diversity (PD; averaged unique branch length), mean phylogenetic 
distance (MPD), UniFrac distance and mean nearest taxon distance 
(MNTD), the latter emphasising genus-level similarities. Testing phy-
logenetic conservatism, overdispersion and turnover across phylo-
genetic scales (Tucker et al., 2017) may be informative in analyses 
of plant-fungal interactions (Chalmandrier et al., 2019), fungal com-
munity assembly processes (Roy et al., 2019) and phylogeographic 
patterns (Turon et al., 2020). These measures and similar indices for 
community turnover can be calculated in phylocom (Webb et al., 

2008), the R packages picante (Kembel et al., 2010), S.phylomaker 
(Qian & Jin, 2016) and PhyloMeasures (Tsirogiannis & Sandel, 2016) as 
well as other open-access scripts (Chalmandrier et al., 2019).

6.2  |  Statistical methods

HTS analyses produce semiquantitative abundance data for OTUs 
(Amend et al., 2010), and many rare taxa remain below the detection 
level (Song et al., 2015). Fungal species differ greatly in the num-
ber of cells per unit biomass, the number of nuclei per cell and the 

F I G U R E  3  Nonmetric multidimensional scaling (NMDS) graphs illustrating relative performance of various normalisation methods and 
dissimilarity (B-C, Bray-Curtis; or Aitchison) measures in recovering trends in microbial eukaryote composition using untransformed and 
Hellinger-transformed data matrices in plant roots (filled circles) and leaves (open circles) in terrestrial (orange) and aquatic (blue) habitats: 
(a, b) rarefied data; (c, d) scaling with ranked subsampling (SRS) normalised data; (e) centred log-ratio (CLR) transformed data; and (f) robust 
CLR (RCLR) transformed data. Numbers on symbols indicate plant species (separate numbering for terrestrial and aquatic plants); ellipses 
depict 95% CI around means for tissue and habitat combinations. Explained variation (%) as revealed from Permanova+analysis is indicated 
in the bottom of each panel (t × h, tissue and habitat interaction; seqs, sequencing depth). Plant species effects are not analysed here for 
simplicity. Arrows highlight critical differences for interpretation. Data from A. Azadnia, V. Mikryukov, L. Tedersoo (unpublished data) that 
assessed the effect of aquatic versus terrestrial habitat and root versus leaf tissue on endophytic fungal diversity using eight plant species 
(n = 4) and PacBio sequencing of the full-length ITS region. We conclude that (1) rarefying underestimates treatment effects, and (2) RCLR 
transformation magnifies treatment effects by efficiently accounting for data compositionality and sparsity

(a) (b)

(c) (d)

(e) (f)
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number of ITS copies per nucleus that all affect relative read num-
bers (Lofgren et al., 2019). The use of quantitative methods assumes 
that all samples are influenced by these biases in a similar manner. 
Since there is a huge variety of methods, we provide an overview of 
alternative, suitable approaches rather than proposing single best 
practices.

For statistical analyses, most of the useful methods that have 
been elaborated in plant and microbial ecology are applicable for 
fungi, too (for review, see Balint et al., 2016; Buttigieg & Ramette, 
2014; Hugerth & Andersson, 2017). In particular, the R packages 
vegan (Oksanen et al., 2019), phyloseq (McMurdie & Holmes, 
2013) and microeco (Liu et al., 2021) are useful for routine analy-
ses besides commercial statistical platforms. It should be kept in 
mind that in any ecological tests, the most biologically informa-
tive information to the readers is the effect size (either Z-score, 
ω2 or adjusted R2) and the direction and shape of the relationship. 
Values of statistical tests and p-values are context-dependent, 
albeit necessary to report along with variance and sample size 
for assessing the validity of the analysis. The rise of type I error 
rate in multiple testing needs to be accounted for by using flex-
ible correction methods such as Benjamini-Hochberg correction 
(Noble, 2009).

Phylogenetic relationships among associated plants, metazoans 
or other organisms can be accounted for by testing phylogenetic 
signals or explicitly quantifying the phylogeny effect by using eigen-
vectors (e.g., adespatial package of R; Dray et al., 2018). Compared 
with using pure phylogenetic distances, the use of eigenvectors has 
proved to extract larger proportions of plant effects on fungal com-
munities (Tedersoo et al., 2013; Yang et al., 2019). Similar eigenvector 
approaches have also been used to quantify and account for spatial 
as well as temporal and plant phylogeny effects on fungal diversity 
(Tedersoo, Anslan, Bahram, Drenkhan, et al., 2020; Zimmerman & 
Vitousek, 2012).

Metabarcoding analyses produce large amounts of data that 
require appropriate transformation. Classical transformations of 
metadata such as logarithmic (concentrations), square-root (counts) 
and log-ratio transformations (proportions) are necessary to shift 
the distribution of residuals towards normal distribution and reduce 
heteroscedasticity – principal assumptions of most parametric tests 
(Legendre & Legendre, 2012). Log-ratio transformation (LRT) also in-
creases the independence of measurements of various proportions 
summing up 100% (see below).

When it comes to large amounts of metadata with potential 
multicollinearity, a rule of thumb is to remove variables with cor-
relation coefficient >|0.7| to a stronger, more meaningful explan-
atory variable. Model selection can be performed by machine 
learning algorithms (Qu et al., 2019) such as random forest im-
plemented in randomforest (Liaw & Wiener, 2002) and VSURF 
(Genuer et al., 2019) and/or R packages with step-wise model 
selection or the AICc information criterion (e.g., nlme R package; 
Pinheiro et al., 2011). The party package of R allows estimating 
interactions among two or more variables using machine learning 
(Strobl et al., 2009), which can be used to assess conditional and 

synergistic effects among variables (Rillig et al., 2019). For vari-
ables expected to exhibit unimodal (e.g., pH over a broad gradi-
ent) or cumulative (e.g., host richness and rainfall) relationships, 
inclusion of second-order polynomials or fitting generalized ad-
ditive models (GAMs; mgcv package of R; Pedersen et al., 2019) 
may be more appropriate. Univariate analyses can also be per-
formed using generalised linear modelling (GLM) by selecting a 
link function that best matches the distribution of variables (Leite 
& Kuramae, 2020).

For community-level analyses, it is important to consider that 
the sequencing data are compositional - that is, sequence counts 
represent at best relative rather than absolute biological abun-
dances of organisms (Gloor et al., 2017; Lin & Peddada, 2020b). 
Therefore, it may be necessary to use Aitchison distance metric 
(Martino et al., 2019; Quinn et al., 2019) and LRT, of which robust 
centred LRT (RCLR) accounts for data sparsity constraint and differ-
ences in sequencing depth (Martino et al., 2019). The correspond-
ing program DEICODE (https://github.com/bioco​re/DEICODE) is 
implemented in QIIME2 and PipeCraft2. With appropriate trans-
formations and accounting for sequencing depth, different meth-
ods reveal roughly comparable results (Figure 3). Alternatively, 
programs for compositional data analyses (e.g., ANCOM-BC; Lin 
& Peddada, 2020a) can be used, but these have very limited op-
tions. PERMANOVA is currently the state-of-the-art multivariate 
analysis method; it outperforms common ordination methods be-
cause of its explicit hypothesis testing and allowing hierarchical 
design and among-variable interactions (Anderson, 2001). The 
program PERMANOVA+included in the Primer6/Primer7 pack-
ages (Anderson et al., 2008) offers more functionalities than the 
adonis routine of the vegan package. The rdacca.hp R package also 
estimates the overall importance of single predictors in multivar-
iate models (Lai et al., 2022). Nonmetric multidimensional scaling 
(NMDS), principal coordinates analysis (PCoA) and redundancy 
analysis (RDA) are among the most popular ordination methods 
for two-dimensional visualisation of multivariate patterns (Paliy & 
Shankar, 2016). In particular, the ordiellipse function in the vegan 
package highlights within-group variance. General dissimilarity 
modelling (GDM) facilitates testing of nonlinear effects of mul-
tiple variables, which helps users to identify and understand crit-
ical biological thresholds (gdm R package; Manion et al., 2018). 
Generalised linear latent vector models (GLLVMs) also allow 
testing nonlinear responses by using variable link functions and 
including quadratic terms and among-species interactions in the 
models (Leite & Kuramae, 2020). Output of the gllvm R package 
provides residual environmental effects on individual OTUs and 
their correlations (Niku et al., 2019). For taxon-level analyses such 
as species (OTU) distribution modelling, random forest and uni-
variate models are appropriate, but nonparametric tests should 
be used because of multiple zero-values. In addition, indicator 
species analyses can be used as implemented in the indicspecies 
R package (Caceres & Legendre, 2009). Specialist and generalist 
features of OTUs can be tested in two community types using 
CLAM, which outperforms other indicator statistics (Chazdon 

https://github.com/biocore/DEICODE
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et al., 2011). However, these indicator analyses may be sensitive 
to data compositionality.

Network analysis has become increasingly popular in microbial 
ecology (Faust, 2021; Mikryukov et al., 2021). Unipartite networks 
(co-occurrence analyses) are often used to infer positive (mutual-
ism and facilitation) and negative (avoidance and competition) in-
teractions among co-occurring taxa (Weiss et al., 2016). Bipartite 
networks estimate partner specificity and how these specific and 
nonspecific taxa are distributed (R package bipartite; Dormann 
et al., 2009). Both approaches also provide information on the 
association structure – modularity, nestedness and connectivity 
– and enable detection of network hubs, putative keystone taxa, 
higher-order interactions and association with environmental vari-
ables (Faust, 2021). However, these methods are sensitive to data 
structure and compositionality, and there is a great risk of overint-
erpretation (Blanchet et al., 2020; Matchado et al., 2021; Rao et al., 
2021; Weiss et al., 2016). The main issue with comparing networks 
is related to their lack of true replication (Bahram et al., 2014) and 
dependence of results on the linkage metric, filtering threshold and 
network construction algorithm (Connor et al., 2017; Weiss et al., 
2016). Nonetheless, consistent associations and integral topologi-
cal parameters usually remain unaffected (Röttjers & Faust, 2018; 
Toju et al., 2015). For addressing biologically meaningful facilita-
tion and avoidance strategies among species, the samples should 
be unpooled and of relevant size to ensure direct contact among 
organisms. Submillimeter scale is the most relevant for assessing 
fungal interactions with other fungi and bacteria in an abiotic en-
vironment. To reduce the number of false positive associations, it 
is recommended to reduce the matrix size (i.e., exclude rare taxa) 
to reach a fill level of c. 50% (Weiss et al., 2016). There are many 
network construction algorithms (Matchado et al., 2021; Weiss 
et al., 2016) for estimating relationship strength with correlation 
measures, indices of dissimilarity between species pairs, propor-
tionality, or measures of conditional dependence omitting indirect 
connections or constructing consensus networks based on differ-
ent measures (e.g., MENA, Deng et al., 2012; and CoNet, Faust & 
Raes, 2016). Some methods account for data compositionality and 
sparsity, for example SparCC (Friedman & Alm, 2011), SPIEC-EASI 
(Kurtz et al., 2015) and SPRING (Yoon et al., 2019). For network 
visualisation, Cytoscape (Shannon et al., 2003) and Gephi (Bastian 
et al., 2009) offer various options.

Structural equation modelling (SEM), in particular path analysis, 
tests the directionality as well as direct and indirect effects among 
variables (Collier, 2020; Fan et al., 2016). These are important to 
consider when the explanatory variables affect each other (e.g., 
vegetation and soil) or there are several related response variables 
(Delgado-Baquerizo et al., 2016; Yang et al., 2017). Nonetheless, the 
causal relationship identified by SEM models strongly relies on the 
hypothetical causalities tested, which should hence be properly jus-
tified by other empirical observations or theoretical foundations. In 
addition, SEM models have several commonly ignored assumptions: 
multivariate normality, linear associations, no missing data, no mul-
ticollinearity and large sample size – at least 20 samples per variable 

in the model (Collier, 2020). Taxonomic composition can also be in-
cluded as principal components in SEM (Antoninka et al., 2009). The 
program AMOS (www.ibm.com) and the R package piecewiseSEM 
(Lefcheck, 2016) offer most functionalities needed for such analyses.

6.3  |  Visualisation of results

There are a large number of methods and software tools available 
for visualising the statistical results. In all types of illustrations, it 
is important to emphasize the main differences (e.g., by colour, but 
using palettes suitable for various colour-blindness forms) with ap-
propriate variance measures (if applicable) and avoid too much 
extra detail (i.e., noise). Network diagrams and circos plots (chord 
diagrams; Gu et al., 2014) are useful for displaying the structure of 
associations in the data.

Among simple graphs, box plots and scatter plots are the 
most commonly used. Violin plots are a specific type of box plots 
that indicate distribution of measurements and deviation from 
normality. Rarefaction curves (smoothed species accumulation 
curves) are useful for graphical comparisons of species evenness 
and richness but also evaluating sufficiency of sampling and se-
quencing depth within and among samples (Colwell et al., 2004). 
Heat maps are useful for visualising large correlation matrices or 
the results of multiple multifactorial analyses (e.g., ClustVis web 
tool; Metsalu & Vilo, 2015), although the typical lack of within-
treatment variation can make their ecological interpretation chal-
lenging. Venn diagrams are useful for showing unique and shared 
variation among factors or OTUs across factor levels or combina-
tions (e.g., venny; Oliveros, 2007), and rank-abundance plots can 
provide useful information on what specific taxa underlie certain 
ecological patterns. Similarly, overlying environmental vectors 
on ordination plots can help to identify the abiotic and biotic 
variables that are associated with specific taxon or sample abun-
dances. In the R environment, the ggplot2 (Wickham, 2011) and 
phyloseq packages provide broad opportunities for constructing 
high-quality graphs.

The overall taxonomic composition is best visualised in stacked 
plots, which makes it easier to display multiple treatments. However, 
as error bars are lacking (there is no space), such plots and heat maps 
are examples of implicit pseudoreplication (but see figure in Box 2). 
Krona charts (Ondov et al., 2011) and heat trees (metacoder package 
of R; Foster et al., 2017) provide an efficient way of demonstrating 
the distribution of dominant taxa by taxonomic ranks (e.g., Nilsson 
et al., 2017). Because of high space requirements, the overall view 
or comparison of up to two levels of a treatment can be effectively 
indicated for Krona charts, but interactive versions can be provided 
as supplementary items. Heat trees can handle two factor levels or 
a single gradient.

While phylogenetic trees are generally too large for visualising 
taxonomic affiliation of OTUs in the main article, these are well 
suited to supplementary items. Although family-level and higher-
level phylogenetic relationships cannot always be assessed based 
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on ITS data, these are suitable for demonstrating rough phyloge-
netic placement. Phylogenetic trees make more sense for 18S and 
28S rRNA gene data and are furthermore helpful in detecting arte-
factual OTUs based on ultra-long branches or branches with zero 
length next to a long-branch taxon (Tedersoo et al., 2020). Large 
circular phylogenies squeezed into c. 17 cm page width offer limited 
opportunities for interpretation if taxon names are unreadable and 
branch support values are lacking. Using iTOL (interactive tree of 
life; https://itol.embl.de/), more than 50,000 taxa in phylogenetic 
trees can be tagged with large amounts of metadata for display in 
supplementary materials (Letunic & Bork, 2021).

6.4  |  Data management

Funding requests should be written to cover not only the field and 
laboratory parts, but also data processing, metadata annotation and 
public deposition and dissemination. Fungal metabarcoding data 
should be submitted to any public archive such as short read archive 
(SRA), European nucleotide archive (ENA) or UNITE, indicating data-
base accession numbers. UNITE calculates 100%-similarity OTUs for 
full-length ITS sequences for each biological sample; these are incor-
porated in the SH system and used for further reference along with 
the metadata. Direct submission of representative HTS sequences 
to INSDc is discouraged, because these poorly annotated and com-
monly low-quality data hamper further analyses. For data sharing, 
OTU community matrices, metadata and demultiplexing informa-
tion should be uploaded in public repositories (e.g., Figshare, Dryad, 
zenodo) or supplementary materials, which enable other users 
to perform meta-analyses and populate databases (Põlme et al., 
2020; Větrovský et al., 2020). For the sake of clarity and machine-
readability, it is best to use standardised MIMARKS and MIxS termi-
nology (Yilmaz et al., 2011). Scripts used for analyses should also be 
released in, for example, Github or zenodo, to secure reproducibility 
and potential reuse in other applications. We recommend research-
ers to use specific workflow managers to ease these procedures 
(Wratten et al., 2021).

In the materials and methods section of scientific articles, it is im-
portant to document all aspects of the analysis (Lindahl et al., 2013). 
This is likely to shorten the review process and help reviewers and 
readers to evaluate the validity and novelty of the procedures. For 
knowledge exchange, we endorse posting preprints at the submission 
stage to a preprint server such as bioRxiv or Authorea. Publishing 
open access may increase readership and citations several-fold since 
some universities in developing countries lack subscriptions to many 
journals (Piwowar et al., 2018).

7  |  FUTURE PERSPEC TIVES AND 
CONCLUSIONS

HTS analyses have recently opened new frontiers in many fields of 
mycology. Metabarcoding analyses using SIP of labelled substrates 

(Hannula et al., 2017) or coupled with metatranscriptomics (Žifčáková 
et al., 2016) have revealed functionally active fungi and their activity 
in situ. Parallel studies of fungi, bacteria and protists have shed light 
into antagonistic interactions (Bahram et al., 2018; Bork et al., 2015), 
the structure of the micro- and mycobiome web (Tipton et al., 2018) 
and mechanisms of community assembly (Zinger, Taberlet, et al., 
2019). HTS-derived data have revealed several groups of previously 
undescribed (or unsequenced) order- and class-level fungal lineages 
(Tedersoo, Anslan, Bahram, Kõljalg, et al., 2020; Zhang et al., 2021). 
HTS reads offer material for constructing taxon-specific primers 
and probes for visualising cells (Chambouvet et al., 2019) and help 
discovery and characterisation of poorly known fungal lineages. 
Increasing read length and accuracy of HTS methods enhance taxo-
nomic precision and highlight a venue for population-level studies 
based on eDNA (Byrne et al., 2017; Turon et al., 2020). This may 
be of particular relevance to fungal taxa that are difficult to culture 
and form no fruit-bodies (Lücking et al., 2021). Metabarcoding of 
short fragments furthermore sheds light into ancient DNA includ-
ing potentially ancient fungi (Balint et al., 2018; Talas et al., 2021). 
Similarly, metabarcoding approaches are useful in generating DNA 
barcodes from organisms that are polyploid (Maeda et al., 2018) or 
harbour multiple haplotypes (Runnel et al., 2022), or are represented 
by century-old specimens including valuable type material where 
extra care is needed to identify and dismiss air-borne contaminants 
(Forin et al., 2018).

Through short-read metabarcoding, fungal diversity has been 
analysed in nearly all habitats on Earth, including extreme environ-
ments (Nilsson et al., 2018). We hope that with the assistance of 
growing reference databases, studies involving fungal taxonomic, 
phylogenetic and functional composition will flourish, because many 
principal aspects in evolutionary and functional (e.g., trait-based) 
ecology remain poorly known so far. These studies should be sup-
plemented by rigorous experiments to validate the findings and infer 
causality. It somehow seems unacceptable that studies on one of the 
most important groups of nutrient cyclers – the fungi – be based on 
anything but the best and most up-to-date methodological recom-
mendations, and we sincerely hope that this review has contributed 
to that end.
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