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Summary 

Soil depth represents a strong physiochemical gradient that greatly affects soil-dwelling 

microorganisms. Fungal communities are typically structured by soil depth, but how other 

microorganisms are structured is less known. Here, we tested whether depth-dependent 

variation in soil chemistry affects the distribution and co-occurrence patterns of soil microbial 
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communities. This was investigated by DNA metabarcoding in conjunction with network 

analyses of bacteria, fungi, as well as other micro-eukaryotes, sampled in four different soil 

depths in Norwegian birch forests. Strong compositional turnover in microbial assemblages 

with soil depth was detected for all organismal groups. Significantly greater microbial 

diversity and fungal biomass appeared in the nutrient-rich organic layer, with sharp decrease 

towards the less nutrient-rich mineral zones. The proportions of copiotrophic bacteria, 

Arthropoda and Apicomplexa were markedly higher in the organic layer, while patterns were 

opposite for oligotrophic bacteria, Cercozoa, Ascomycota and ectomycorrhizal fungi. 

Network analyses indicated more intensive inter-kingdom co-occurrence patterns in the upper 

mineral layer (0-5 cm) compared to the above organic and the lower mineral soil, signifying 

substantial influence of soil depth on biotic interactions. This study supports the view that 

different microbial groups are adapted to different forest soil strata, with varying level of 

interactions along the depth gradient. 

 

Keywords: co-occurrences patterns, metabarcoding, microbial communities, microbial 

interactions, Betula pubescens, boreal birch forest 

 

Introduction 

Forest soils harbour diverse prokaryotic and eukaryotic microbial assemblages that are crucial 

for overall ecosystem functioning (Bardgett and van der Putten 2014). Bacteria and fungi 

are the primary organisms controlling litter decomposition. The filamentous growth and 

extracellular enzymes secretion ability makes fungi well suited for recalcitrant soil organic 

matter (SOM) and cellulose decomposition (Baldrian and Valášková 2008, Bödeker, et al. 

2014, Lindahl, et al. 2002). Other fungi form mutualistic association with plant roots 

(mycorrhiza), which improves plant access to soil nutrients, and in exchange, they gain 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/advance-article/doi/10.1093/fem
sec/fiab022/6129799 by guest on 16 February 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

carbohydrates from their host plants. Fungi perform a range of functions in the soil and link C 

and nutrient flow between primary producers and higher trophic levels, making them 

important players in the microbial food webs (Geisen and Bonkowski 2018). Bacteria 

preferentially utilise low molecular mass organic compounds produced by biopolymer 

decomposition via fungi (Štursová, et al. 2012). However, bacteria are also able to decompose 

cellulose and other plant polysaccharides (López-Mondéjar, et al. 2016) and study even 

suggests they are able to decompose lignin (Wilhelm, et al. 2018). Micro-eukaryotes other 

than fungi have long been neglected in surveys of forest ecosystems and barely studied in the 

topsoil (Geisen, et al. 2017, Mahé, et al. 2017, Oliverio, et al. 2020, Venter, et al. 2018). This 

polyphyletic group of organisms is extremely diverse with both multicellular (e.g. 

invertebrates) and unicellular (e.g. ciliates, cercozoans, apicomplexans and protists) life 

forms. Protists are among the main consumers of soil bacteria and fungi (Geisen, et al. 2017, 

Seppey, et al. 2017). Protists are also predators of soil invertebrates and their diversity 

correlates with diversity of their hosts (Singer, et al. 2020). They form a dynamic hub in the 

soil microbiome, exerting top-down control over bacterial and fungal populations (Crowther, 

et al. 2013, Xiong, et al. 2017). However, we lack comprehensive studies analysing the co-

occurrence patterns of all three different organismal groups (bacteria, fungi and micro-

eukaryotes) from the same soil niche. 

 A wide range of edaphic factors can shape the composition of forest soil microbial 

communities, such as soil pH and nutrients, quantity and quality of litter input, as well as root-

derived C (Baldrian 2017). Since nearly all of these factors vary with soil depth, a 

corresponding shift in the microbial communities is expected. Considering that pH is the 

major driver for bacterial richness distribution in soil (Fierer and Jackson 2005; Rousk et al 

2010), we also expect sharp change in bacterial richness with depth, where soil pH changes. 

Indeed, previous studies have shown depth related trends in fungal communities both at 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/advance-article/doi/10.1093/fem
sec/fiab022/6129799 by guest on 16 February 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

species level (Baldrian, et al. 2012, Rosling, et al. 2003) and functional level (Žifčáková, et al. 

2017) in coniferous forests. Further, in a reciprocal transplantation experiment, Bödeker, et al. 

(2016) revealed that competition between saprotrophic and ectomycorrhizal fungi was 

important for regulating their vertical distribution. Depth-dependent structure in fungal 

communities has previously been observed in both spruce and beech forest from Norway 

(Asplund, et al. 2018). A decrease in diversity, biomass and fungal enzyme activity with 

increasing depth, as well as higher gene transcription activity in the litter horizon of 

coniferous forest, have also been reported (Baldrian, et al. 2013, Voříšková, et al. 2014, 

Žifčáková, et al. 2017). Saprotrophic fungi largely colonize the upper litter and poorly 

decomposed organic matters due to their ability to utilize recalcitrant plant residues (Lindahl, 

et al. 2007, Voříšková, et al. 2014). As the proportion of organic matter decreases with depth, 

the abundance of saprotrophic fungi decreases. Ectomycorrhizal (ECM) fungi, on the other 

hand, which are suggested to be key players in forest C dynamics (Clemmensen, et al. 2013), 

increase in the lower humus and mineral soil (Dickie, et al. 2002). The newly discovered 

Archaeorhizomycetes, lacking typical mycorrhizal structures but possessing decomposition 

ability, may dominate in the deeper soils of coniferous forests (Rosling, et al. 2011). Most 

studies both in coniferous and deciduous forest focus on the litter layer and the upper organic 

soil horizon (Bahram, et al. 2018, Hartmann, et al. 2012, Tedersoo, et al. 2014), but there is 

evidence for that the deeper mineral soils needs to be included to assess the overall microbial 

diversity (Du, et al. 2017, Jumpponen, et al. 2010, Lindahl, et al. 2007, Rosling, et al. 2003, 

Santalahti, et al. 2016). Compared to fungi, there are few studies addressing the vertical 

distribution of other micro-eukaryotes (Ekelund, et al. 2001, Potapov, et al. 2017) and bacteria 

(Baldrian, et al. 2012, Du, et al. 2017, Eilers, et al. 2012, Hartmann, et al. 2012, López-

Mondéjar, et al. 2015, Pereira, et al. 2017) in forest soils, and their distribution have rarely 

been analyzed through the mineral soil profile (<30 cm).  
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 Inter-kingdom co-occurrence patterns of soil microbes has been shown to vary 

depending on soil types, organic C and pH level (Creamer, et al. 2016, de Araujo, et al. 2018, 

Xiong, et al. 2017), and are tightly linked with above-ground vegetation (Wardle, et al. 2004). 

Recently, Hernandez, et al. (2021) demonstrated that in scrub habitats, under stressful 

environment conditions microbial community network destabilizes by decreasing modularity 

as well as negative:positive cohesion. Results from co-occurrence network-based analyses 

does not necessarily reflect biotic interactions. However, such analyses allows us to 

generate hypotheses about potential biotic associations among community members and 

enables us to examine cross-kingdom relationships in large microbial community datasets 

generated in high-throughput sequencing (HTS) studies of environmental DNA (de Vries, 

et al. 2018). By employing network analyses for soil communities we can produce 

hypotheses about 1) the functional roles of uncultured microorganisms (Chaffron, et al. 

2010, Fuhrman and Steele 2008); 2) niche spaces shared by community members (Delmas, 

et al. 2019); and 3) positive (symbiosis) and negative (e.g. pathogenicity) interactions 

between community members (Röttjers and Faust 2018).  

This study investigates depth dependent associations between microbial taxa 

bacteria, fungi and non-fungal micro-eukaryotes (referred to in the following as “micro-

eukaryotes”) in boreal soil and their inter-kingdom co-occurrences patterns. Previous studies 

have largely focused on a specific organismal group, such as fungi, but here we wanted to 

assess all the major microbial groups together. This is done by DNA metabarcoding analyses 

of bacteria, fungi and micro-eukaryotes from various depths in forest soils of five native 

deciduous birch (Betula pubescens Ehrh.) forests in Western Norway. Our study was aimed 1) 

to investigate how the various organismal groups differ in composition and diversity through 

the forest soil column down to 30 cm mineral soil depth and what are their drivers? We here 

expect that all groups respond strongly to soil depth due to variation in soil nutrients and pH, 
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with highest richness in the top layer; and 2) to assess how inter-kingdom co-occurrence 

patterns and network architectures, indicative of biotic interactions, vary with soil depth. We 

expect that the species are more filtered by stressful abiotic conditions and have less biotic 

interactions in the deep soil profiles, while biotic interactions are more intense in the top 

layers.  

 

Materials and methods 

Site description, experimental setup and sampling 

This study was conducted in native deciduous birch (Betula pubescens Ehrh.) forests at five 

locations in western Norway (61°30' N, 6°12' E; Material and methods S1; Fig. S1). Distance 

between the northernmost (Molde) and the southernmost (Jøster II) locations is approx. 320 

km. All the locations are positioned in the middle boreal vegetation zone, and occasional 

grazing as well as selective cutting have occurred through time. At all locations the bedrock is 

covered by thick moraine deposits (NGU 2020). The soil texture is sandy loam at all locations 

except for Stranda, where, in addition to the sandy loam, parts of the soil profile are 

dominated by silt loam. Generally, the soil chemistry did not differ significantly between 

locations except C:N ratio (Kjønaas et al, submitted). The ground vegetation was dominated 

by a mix of bilberry (Vaccinium myrtillus L.), grasses, herbs and bryophytes.   

At each location, three 144 m2 plots were established within a birch stand in areas with 

relatively homogeneous soil, topography and vegetation. In July 2016, 20 soil cores per plot 

were collected down to approx. 30 cm soil depth in a grid sampling design by use of a 

cylindrical auger (Ø=2.6 cm). Each soil core was divided into four layers: the forest floor 

(LFH) and three mineral soil layers based on sampling depth (0-5 cm “M1”; 5-15 cm “M2”; 

15-30 cm “M3”). M1 is the organic-mineral interface layer, also termed the “Ah” layer. 

Samples from each plot and layer were pooled into one composite sample, resulting in 
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altogether 60 samples (5 locations*3 plots*4 depths). After pooling of subsamples and 

thorough homogenization, the mineral soil samples from each layer were divided into two 

separate samples (one for DNA/ergosterol and other for chemical analyses). As the LFH 

sample was difficult to homogenize, the entire sample was allocated to DNA and ergosterol 

analyses. For chemical analyses of the LFH layer, an additional sample was collected adjacent 

to the sample collected for DNA analyses using a cylindrical auger (Ø=6.6 cm). All the 

samples for DNA and ergosterol analyses were stored at -20 °C immediately after collection, 

whereas the samples for soil chemistry were kept cool during transport and frozen after 

returning to the lab. 

Prior to the DNA and ergosterol analyses, the soil was homogenized by sieving (2 mm 

sterilised sieve), followed by freeze-drying and pulverizing using FastPrep instrument (MP 

Biomedicals, Illkirch-Graffenstaden, France). The finely grounded soil fractions were used for 

analysis of DNA as well as total ergosterol (fungal biomass proxy) using the protocol of 

Ransedokken, et al. (2019).  

 

Soil chemistry analysis 

Prior to analyses, the soil samples were thawed, air dried and sieved through a 2 mm sieve. 

The fine soil fraction was analysed for dry matter (105ºC), total C% and N% (Elementar 

Vario EL with TCD detector), pH (H2O) (PHM 220) and exchangeable elements (Hydrogen 

(H), Calcium (Ca), Potassium (K), Magnesium (Mg), Manganese (Mn), Sodium (Na),  

Phosphorous (P) and Sulphur (S)) (in 1M NH4NO3; Thermo Jarell Ash ICP-IRIS HR Duo). 

The fine soil fraction was finely ground (planet mill) before the C and N analysis. For details 

see Ogner, et al. (1999). 
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DNA extraction and Illumina sequencing 

One gram of homogenized soil was added in 10 ml CTAB buffer, and 600 μl of the 

CTAB/soil-sludge was transferred to a 2 ml eppendorf tube containing two tungsten-carbide 

beads. Samples were grinded for one minute (25 Hz) and repeated after flipping the racks, and 

immediately stored at -20 °C. DNA was extracted following the CTAB/chloroform extraction 

protocol and further purified using the E.Z.N.A soil DNA kit (Omega Biotek, USA) following 

the manufacturer's protocol. Detailed information about PCR settings and reaction is provided 

in supplementary material (Material and methods S1). Molecular data was generated from 

three full Flow-Cell runs and Paired-End (PE: 2x300 bp) sequencing with Illumina Miseq. 

Different primer combinations were used to amplify the 16S rRNA gene for bacteria ITS2 

gene for fungi, and 18S rRNA gene for both fungal and micro-eukaryotes. The ITS region, 

which is the most common DNA barcode for fungi (Schoch, et al. 2012), is mostly used to 

analyze fungal communities (Nilsson, et al. 2009). However, various biases, including primer 

mismatches and length differences, may lead to some groups being excluded (Bellemain, et 

al. 2010, Schadt and Rosling 2015, Tedersoo and Lindahl 2016). Universal 18S primers were 

used to amplify the overall micro-eukaryotic communities, also including fungi (Material and 

methods S1). While the highly variable ITS2 marker provide detailed taxonomic information 

about fungi, mainly at species and genus level, 18S provides taxonomic assignments at higher 

taxonomic levels. However, the more conserved 18S marker provides a more comprehensive 

overall picture for micro-eukaryotes, because of less amplification biases (Hugerth, et al. 

2014). The fastq-formatted sequence datasets for 16S, ITS and 18S markers gene along with 

barcode mapping files and associated metadata were archived at Zenodo (https://zenedo.org), 

a scientific data repository developed by CERN, with a single DOI for the project 

(10.5281/zenodo.4415050). 
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Downstream analyses focused on all the three main microbial groups bacteria, fungi 

and the highly polyphyletic micro-eukaryotes. The 18S dataset contained both fungal and 

non-fungal reads therefore it was divided into a fungal and a non-fungal dataset (the latter 

hereafter referred to as micro-eukaryotes, for simplicity). 

 

Bioinformatics analyses 

To enable comparisons across all datasets, the same bioinformatics pipeline was employed for 

all data. Raw data was passed through BayesHammer, a bayesian clustering based error 

correction method (Nikolenko, et al. 2013), before merging the PE reads using PEAR v0.9.10 

with minimum overlap of 10 bp and Q20 quality score threshold for trimming the low quality 

part of a read (Zhang, et al. 2014). For excluding reads with poor quality we used FASTX-

Toolkit v0.0.14 (fastq_quality_filter, http://hannonlab.cshl.edu/fastx_toolkit/index.html) with 

the parameter settings: minimum Phred quality score = 30, and proportion of bases that must 

have minimum quality score=0.9. A second level of quality control was performed using 

VSEARCH v2.4.3 (Rognes, et al. 2016) to remove reads with ambiguous base=0, length <100 

bp and total expected errors (E) >0.5 for all bases. Remaining high quality reads were 

demultiplexed using the SDM v1.41 program embedded in the LotuS pipeline (Hildebrand, et 

al. 2014). Using FQGREP v0.4.4 (https://github.com/indraniel/fqgrep) and FASTX-Toolkit, 

reads were oriented in the same direction and primers were trimmed. For fungal ITS dataset, 

the ITS2 region was extracted using ITSx v1.0.11 (Nilsson, et al. 2010), followed by removal 

of reads <100 bp. We then used VSEARCH for dereplication, global singletons removal and 

clustering (97% similarity threshold for the 16S and ITS2 datasets and 98% for 18S dataset). 

The most abundant sequence of each cluster was designated as the representative sequence. 

Chimera checking was performed on the representative sequences using uchime_denovo 

algorithm (Edgar, et al. 2011), implemented in VSEARCH, with the minimum divergence 
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parameter = 0.8, abundance skew = 2 and minimum difference in segment = 3. Since we 

wanted to focus on the more abundant microorganisms, Operational Taxonomic Units (OTUs) 

with <10 reads were removed, also in order to minimize the impact of sequencing and PCR 

errors. Taxonomic assignment were made by comparing the representative sequence against 

the curated reference databases GREENGENE v13.8 (DeSantis, et al. 2006, McDonald, et al. 

2012), UNITE v6 (Kõljalg, et al. 2013) and PR2 v4.62 (Guillou, et al. 2013) for bacteria, 

fungi and micro-eukaryotes, respectively. In order to assign a functional guild, the fungal 

ITS2 OTUs were passed through FUNGUILD (Nguyen, et al. 2015).  

Bacteria, fungi (18S) and micro-eukaryotes (Fig. S2a, e, g) showed non-normal 

distribution of reads, which was not the case for the ITS2 fungal dataset (Fig. S2c). The 

distribution patterns of reads per OTUs was skewed with few dominating and a long tail of 

rare OTUs for all groups (Fig. S2b, d, f, h). Sample-based rarefaction curves of OTU richness 

showed that the complete richness was not captured in most samples (Fig. S3a-d). 

Correspondingly, there was a positive and significant relationship between OTU richness and 

sequencing depth for bacteria (R2=0.58; P<0.001), fungi (18S) (R2=0.52; P<0.001) and micro-

eukaryotes (R2=0.74; P<0.001). Probably due to better sequencing depth, this was not 

observed in the fungal ITS2 based dataset (R2=0.16; P=0.328). To correct for potential 

sequencing depth biases, all datasets were rarefied prior to diversity analysis (reads per 

sample for bacteria, fungi (ITS), fungi (18S) and micro-eukaryotes were 6343 (16S), 55 485 

(fungi ITS2), 2783 (fungi 18S) and 3430 (micro-eukaryotes), respectively. Two samples with 

low read numbers were discarded. 

 

Statistical analyses 

Unless stated otherwise, statistical analyses were performed in R v3.5.0 (R Core Development 

Team 2018). Prior to analyses, all soil variables were logarithm-transformed and a Principal 
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Component Analysis (PCA) was used to assess tentative collinearity between environmental 

variables and soil depth. OTU table containing species data were arcsine-transformed prior to 

analyses to improve variance homogeneity. 

ANOVA followed by Tukey’s HSD post-hoc test (package agricolae (Mendiburu and 

Simon 2015)) was used to examine differences in soil properties, ergosterol content, as well 

as richness, Shannon diversity and evenness of all the microbial groups, with soil depth. The 

same test, with Benjamini-Hochberg FDR correction, was used to assess whether the relative 

proportion of different phyla (from all datasets) and genera varied with soil depth. The results 

were illustrated using bar plots (phyla) and hierarchical heat plots (genera).  

The Bray–Curtis dissimilarity index was used to generate community distance 

matrices. To address the relative importance of the soil chemistry variability index (i.e. PC1), 

and the location effect (i.e. PC2) on community composition of all groups of microorganisms, 

we used multivariate permutational analysis of variance (PERMANOVA), as implemented in 

the Adonis function of the package vegan (Oksanen, et al. 2013). PERMANOVA analyses 

with 9999 permutations were performed using a forward selection procedure to optimise the 

final model (Blanchet, et al. 2008). We first tested model for individual above mentioned 

variables and included significant variables in the final model in order of their R2 values, to 

assess if remaining variation can also be explained by other variables. Nonmetric 

Multidimensional Scaling (NMDS) analyses were used to visualize the relative effects of 

these variables on microbial communities using the metaMDS function of the package vegan. 

Vectors and centroids of the variables were fitted into NMDS plots using the function envfit, 

and the ordiellipse function was used to plot the 95% confidence intervals (CI) of the depth. 
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Network analyses 

To investigate inter-kingdom co-occurrences patterns, network analyses were performed on 

core communities (OTUs with >0.5 % of total reads, and present in at least three samples) 

selected from each normalised dataset (Material and methods S1). These core OTUs from the 

three datasets were summarized at the genus level and the samples were normalized 

separately by subsampling to the lowest number of sequences across all three datasets. The 

subsampled genus-tables were then merged into one table containing genera of 93 bacteria, 73 

fungi, and 10 micro-eukaryotes. Co-occurrence networks for the overall dataset, as well as for 

the four soil depths separately, were constructed with SparCC, as implemented in the R 

package SpiecEasi (Kurtz, et al. 2015). SparCC was run with default settings and 500 

bootstraps. Only associations with pseudo p-value < 0.05 and correlations > |0.7| were kept. 

Visualization of networks as well as calculation of network statistics were done with 

Cytoscape v3.6.1 (Smoot, et al. 2011) and the R package igraph (Yu, et al. 2009). We 

calculated the flowing network characteristics: density, degree, neighbourhood connectivity, 

clustering coefficient, and average path length (Material and methods S1). Network density is 

calculated as the proportion of realised possible correlations given the number of genera in the 

network; degree is a measure of how many correlations each genus form with other genera; 

neighbourhood connectivity measures how many correlations a “neighbour” genus (i.e. one 

that is correlated to the focal genus) in turn is correlated to; clustering coefficient describes 

whether the network can be sectioned into groups of highly correlated organisms; while 

average path length is the distance (counted as number of edges) between all pairs of 

associated genera (nodes) divided by the number of genera in the network. A Wilcoxon 

signed-rank test was used to test whether the network characteristics differed between soil 

depths. 
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Results 

Data characteristics 

Diverse prokaryotic and eukaryotic communities, with altogether 1540 bacterial, 4388 fungal 

(3461 ITS-based; 927 18S-based) and 2025 micro-eukaryotic OTUs, were detected in the 60 

composite soil samples (see Results S2 for details). Ergosterol content, a proxy for fungal 

biomass, was significantly higher in the upper litter and humus (LFH) layer (0.158 mg g-1) 

compared to the mineral soil layers (<0.026 mg g-1; Fig. S4). Likewise, the total C and N 

content, as well as all exchangeable elements were highest in the LFH layer and decreased 

with soil depth, while pH had an opposite trend (Fig. S5). PCA clearly showed that soil depth, 

as well as all measured edaphic factors, including pH, correlated tightly with the first PC axis 

(Fig. 1), which can be interpreted as a “soil chemistry variability index”. The second PC axis 

reflected site specific effects, including variation in the C:N ratio across plots and locations. 

Due to the high collinearity between numerous variables as well as soil depth, PC axes 1 

(“soil chemistry variability index”) and 2 (“location effects”) were used in the further analyses 

as proxies for environmental variability. 

 

Microbial diversity and communities’ patterns with soil depth 

In line with depth driven changes in soil chemistry, we observed a decrease in richness with 

soil depth for all microbial groups (Fig. 2a, d, g, j). A similar declining trend was observed for 

Shannon diversity and the evenness index for all microbial taxa, except for the micro-

eukaryotes (18S). However, a positive relationship (R2 = 0.11; p-value < 0.001) between 

micro-eukaryotic reads and ergosterol content was observed. 

All the studied microbial groups showed a strong and consistent pattern of 

compositional shift with the soil chemistry variability index, as revealed by multivariate 

PERMANOVA (Table 1) and visualised using NMDS analyses (Fig. 3a-d). The location 
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effect, linked to variability in C:N ratio among sites, had weaker relationships with the 

community composition. The proportion of OTUs shared among all four soil depths were 

higher for bacteria (86%; Fig. S6a) compared to fungi (ITS: 56%; 18S: 48% Fig. S6b, c) and 

micro-eukaryotes (50%; Fig. S6d).  

 Overall, the prokaryotic communities were dominated by Proteobacteria (32% reads; 

31% OTUs) and Acidobacteria (25% reads; 21% OTUs). The shift in bacterial composition 

from organic to mineral soil layers was mainly driven by changes in Proteobacteria, 

Actinobacteria, Verrucomicrobia and Bacteriodetes, being significantly more proportionally 

abundant in the upper LFH layer, while Acidobacteria, Firmicutes and Chlorofexi were 

proportionally more abundant in the deeper mineral soil layers (Fig. 4a). Similarly, 

proportions of certain genera also showed consistent patterns with soil depth (Fig. 5a). The 

proportions of the genera Povalibacter, Roseiarcus, Rhizomicrobium, Reyranella, 

Burkholderia and Phenylobacterium (Proteobacteria); Granulicelia (Acidobacter) were 

significantly higher in upper LFH layer (Fig. 5a) while the proportions of Steroidobacter, 

Nitrospirillum, Blastochloris and Afipia (Proteobacteria); Gp2, Gp6 and Acanthopleuribacter 

(Acidobacteria); and Tepidibacillus (Planctomycetes) were higher in the lower mineral layers.  

As revealed by the 18S primers, fungi dominated among the eukaryotes, making up 

50% of the reads and 30% of the OTUs. In this dataset, the proportion of Ascomycota reads 

was significantly higher in the lower mineral soil layer compared to the upper LFH layer (Fig. 

4c), a shift largely driven by significantly higher proportions of Archaeorhizomycetes reads in 

the deeper mineral soils (Fig. 5c). In contrast, Chytridiomycota (Fig. 4c) made up a 

significantly higher proportion of reads in the upper organic layer, while the other fungal 

phyla, Basidiomycota, Mucoromycota and Cryptomycota, showed rather uniform distribution 

with soil depth in the 18S dataset. When the ITS2 region was used to survey the fungal 

communities, a contrasting pattern was detected for some groups (Fig. 4b, 5b), especially so 
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for the Archaeorhizomycetes, which was only recovered as dominating taxa while using the 

18S primers (Fig. 5c). In contrast to the 18S data, basidiomycetes (50% reads; 29% OTUs) 

were the most abundant in the ITS2 data, but ascomycetes still included a higher OTU 

richness (45% reads; 60% OTUs). In the ITS2 dataset, relatively higher proportion of 

symbiotrophic fungi such as Inocybe, Gyroporus (both ECM) appeared in the mineral soil 

layers (Fig 4b, 5b). Several fungal genera had significant shifts in proportions with soil depth 

(Fig. 5b). Clavaria were proportionally more abundant in the lower mineral layer, whereas 

Cortinarius, Lactarius, Tomentella (all ECM) and Mycena were proportionally more 

abundant in upper LFH layer. The Ascomycota genera Oidiodendron, Capronia, Leohumicola 

and Hydnotrya (ECM) were proportionally more common in the lower mineral layer. 

Among the other micro-eukaryotes, Metazoa was the most dominating group (28% 

reads; 17% OTUs) followed by Cercozoa (11% reads; 27% OTUs) and Ciliophora (4% reads; 

8% OTUs). As for bacteria and fungi, they all displayed significant depth related changes in 

their proportions (Fig. 4d). In the upper layer, the proportion of metazoan reads, and 

specifically so Arachnida, was significantly higher along with Conosea (Variosea). 

Additionally, apixomplexan parasites belonging to Gregarines were also proportionally more 

abundant in the upper organic layer. The cercozoans Filosa-sarcomonadea (Sandonidae, 

Cercomonadidae and Allapsidae) and Filosa-Inbricatia, and the ciliates Spirotrichea 

(Oxytrichidae) and Colpodea made up a higher proportion of the reads in the lower mineral 

layers (Fig. 5d). 

 

Inter-kingdom co-occurrence patterns with soil depth  

The network analyses revealed a higher number of positively or negatively correlated (co-

occurring) genera in the top layers, compared to the deepest layer M3, with M1 having the 

highest number of correlations (Fig. 6a-d, Fig. S7-10). In line with this, the network statistics 
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network density, degree and neighbourhood connectivity were on average highest in M1 

(Table S1; Fig 6e-f). Likewise, the average path length was lowest in the M1 layer and 

increased with increasing depth (Fig. 6h). A low average path length indicates that most taxa 

in the network are connected through few intermediate taxa. The network statistics suggest 

that organisms in the M1 layer form more association with each other compared to in the 

other soil layers. Further, the clustering coefficient, which describes whether the network can 

be sectioned into clusters of highly correlated genera, was also highest in M1 (Fig 6g). A 

Wilcoxon signed-rank test showed that the M1 layer was significantly different for most of 

the network statistics (Table S2) and 14 genera were exclusively detected in this layer (Fig. 

S11). There was no significant difference between the LFH layer and the M3 layer in the 

network topology (Table S2). These two layers have 30 genera in common (Fig. S11), and 

only 10 and 6 genera were exclusively detected in the LFH and M3 layers, respectively. These 

two layers are thus predominantly dominated by similar taxonomic composition. The 

proportion of positive correlations was highest for the above LFH (73.8%) and M1 layers 

(73.5%), and decreased towards the M3 layer (57.0%), where the relative proportion of 

negative correlations was higher (43%) (Fig. 6a-d). Taxa belonging to Firmicutes 

(Vagococcus, Bacillus, Enterococcus, Paenibacillus and Macrococcus), Acidobacteria (Gp1 

and Gp3) and a yeast group (Candida), showed higher numbers of co-occurrences in the 

upper M1 compared to other layers. 

 

Discussion 

As hypothesised, soil depth represents a strong and complex environmental gradient with 

multiple edaphic factors changing concurrently with depth in the investigated birch stands. A 

strong niche partitioning with depth is reflected in both diversity and structure of the bacterial, 

fungal as well as micro-eukaryotic communities. Further, the soil gradient also affected inter-
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kingdom co-occurrence patterns among soil horizons, and most dense as well as complex 

network, with higher degree and neighborhood connectivity, was observed in the upper 

mineral soil layer (M1).  

In addition to soil depth, some of the variation in community composition could be 

attributed to environmental differences among locations (location effects), including 

differences in C:N-ratio, aspect and latitude. Two locations (Molde and Stranda) were south-

facing, two (Jølster I and II) north-facing and the last one (Ørsta) east-facing, which lead to 

temperature differences. The systematic variation in C:N-ratio may be induced by a gradient 

in N deposition (Fischer, et al. 2007). 

The two different markers (ITS2 versus 18S) used for fungi provided a slightly 

different view of the fungal communities, especially when it comes to Archaeorhizomycetes 

(Ascomycota) and chytrids. These two groups were not captured fully by the ITS2 primers, 

indicating primer biases discriminating against e.g. Archaeorhizomycetes and chytrids 

(Ihrmark, et al. 2012, Nilsson, et al. 2019, Rosling, et al. 2011, Schadt and Rosling 2015, 

Tedersoo, et al. 2014). The 18S universal primers employed in this study seems to amplify 

most eukaryotes (Hadziavdic, et al. 2014), providing a more comprehensive picture of the 

fungal community composition compared to the ITS2 dataset. However, there might also be 

primer biases associated with the 18S primers (Anderson, et al. 2003). Nevertheless, our 

results highlights the importance of using different markers to better capture the diverse 

microbial communities in soil.  

 

Depth matters: biomass, diversity patterns and soil characteristics 

One of the most evident changes through the soil profile was the distinct decrease in fungal 

biomass with depth in the deciduous forest, corroborating findings of previous studies from 

coniferous forest (Hartmann, et al. 2012, Voříšková, et al. 2014). A similar declining trend in 
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bacterial biomass with depth in deciduous forest soils has also been reported (Hartmann, et al. 

2012). Using traditional culturing and quantitative methods, a sharp decline in protozoan 

biomass with depth has been observed in Danish deciduous and coniferous forest sites 

(Ekelund, et al. 2001). Thus, there is mounting evidence of a general pattern of decreasing 

biomass with increasing forest soil depth, regardless of microbial groups. 

We observed significant declines in diversity patterns with depth across different 

microbial groups, with a stronger pattern for fungi compared to bacteria and other micro-

eukaryotes. Our findings are in line with studies from boreal coniferous forest (Baldrian, et al. 

2012, Hartmann, et al. 2012, Kyaschenko, et al. 2017, Lindahl, et al. 2007, Rosling, et al. 

2003, Santalahti, et al. 2016). Similarly, studies from deciduous mountainous hardwood (Du, 

et al. 2017), temperate oak forest (Voříšková, et al. 2014) and tallgrass prairie (Jumpponen, et 

al. 2010) ecosystem also consistently revealed declining patterns for fungal richness. These 

patterns are not surprising considering the observed lower biomass of fungi (this study) and 

bacteria (see above) in deeper mineral soil. Although micro-eukaryotes are important in soil 

food webs, the effects of soil depth on their diversity has rarely been investigated (Potapov, et 

al. 2017). A synchronous decrease in diversity of bacteria and fungi together with micro-

eukaryotes suggest key role of micro-eukaryotic organisms in the food webs since they are 

highly dependent on bacteria and fungi as C sources (Crowther, et al. 2013, Geisen, et al. 

2016, Seppey, et al. 2017, Xiong, et al. 2017).  

The variation in soil chemistry affects micro-eukaryotic diversity (Tedersoo, et al. 

2015), and the observed diversity patterns showed a high correlation with the soil gradient 

patterns. The C concentration and soil nutrients availability are considerably higher in upper 

organic layers. Further, the easily decomposable labile fraction of C has been found to 

decrease with soil depth at the same sampling locations (Hansen, et al. submitted). In 

agreement with previous studies targeting bacterial richness from coniferous forest (Eilers, et 
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al. 2012, Hartmann, et al. 2012), we found a decline in bacterial richness with soil depth. 

There is a large variation in microclimatic conditions and diverse resources of organic matter 

(Schurig, et al. 2013) at the soil surface, that may support a high diversity of ecological niches 

as compared to the deeper soil. Further, only few bacterial groups are well-adapted to grow 

under the oligotrophic conditions that characterize the deeper mineral soil. The decline in 

fungal biomass and diversity in deeper mineral soil may also affect the bacterial richness, as 

some bacterial groups feed on fungi through their ability to secrete protein and cause hyphal 

decay (Swain, et al. 2017). Together, our results indicate that variation in environmental 

conditions with soil depth represent an ecological filter, and that many surface-dwelling 

organisms do not thrive in the nutrient poor environments of the deeper soil horizons. Our 

results also suggest that, independent of organismal groups, a considerable part of the 

diversity cannot be recovered when examining only the topsoil layers, since different soil 

horizon host diverse microbial assemblages. 

 

Depth matters: community compositional patterns 

Our observation of a clear shift in fungal communities with soil depth, agrees with previous 

studies from coniferous forests (Hartmann, et al. 2012, Hobbie, et al. 2014b, Rosling, et al. 

2003, Santalahti, et al. 2016). Saprotrophic fungi, including Mycena spp. (common litter 

basidiomycetes) with demonstrated peroxidase activity (Kyaschenko, et al. 2017) and the 

common leaf endophytes Phialocephala spp., dominated in the top layer. Here, fresh litter is 

supplied by aboveground vegetation and the saprotrophic fungi may out-compete the 

ectomycorrhizal fungi (Fernandez and Kennedy 2016). In accordance with previous studies, 

we detected an overall higher dominance of symbiotrophic fungi in the deeper mineral soils. 

However, the ectomycorrhizal genera Cortinarius, Tomentella and Lactarius, were 

significantly more abundant in the organic layer. This can be linked with the ability of 
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Cortinarius and Lactarius to infect root tips in the organic layer and also their high 

extrametrical mycelium production rate generating more biomass (Anderson, et al. 2014, 

Genney, et al. 2006). Further, some species of Cortinarius may secrete peroxidase in order to 

access and decompose organically bound N present in the organic layers (Bödeker, et al. 

2014). In an experiment using litter bags with 15N-labelled beech leaf, Pena, et al. (2013) 

showed high abundance of Tomentella in leaf litter and provided experimental evidence that 

they are key players in decomposition and N capture from decaying leaves. On the other hand, 

the dominance of the ectomycorrhizal genera Inocybe, Gyroporus and Russula increased in 

the deeper mineral soil, where the substrate becomes increasingly depleted and the 

symbiotrophic fungi likely are highly dependent on host-derived C. This has also been 

validated using a isotope tracer technique, conducted at the Duke free CO2 enrichment 

(FACE) experiment (Hobbie, et al. 2014a, Hobbie, et al. 2014b). Here they showed that ECM 

fungi with hydrophobic exploration types (e.g. Cortinarius and Tricholoma) preferentially 

utilize N from the deeper humus layer whereas fungi with hydrophilic exploration types (e.g. 

Russula and Lactarius) acquired N from the forest litter layer. Further, they also showed that 

Lactarius and Russula only incorporated fresh photosynthate as C source (litter-derived), 

whereas Inocybe and Cortinarius also forage on soil-derived C. This suggests that different 

fungal species and genera have different niche preferences due to their nutrient acquisition 

strategies (Lindahl, et al. 2007). The 18S marker demonstrated a significantly higher 

abundance of Archaeorhizomycetes in deeper soil. Although we lack a complete 

understanding of the Archaeorhizomycetes ecology (Rosling et al., 2011), they may act as 

root-associated mutualists (Menkis, et al. 2014). The high abundance of Archaeorhizomycetes 

in the deeper mineral soil may also indicate an adaption to nutrient limited and stressful 

environments conditions, as suggested in previous studies (Pinto-Figueroa, et al. 2019, 

Sterkenburg, et al. 2015).  
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There has been numerous studies focusing on the vertical distribution of fungi in 

deciduous forest soils, but the literature is more limited for bacteria (Baldrian, et al. 2012, 

Lladó, et al. 2017) and specifically for micro-eukaryotes (Oliverio, et al. 2020). As expected, 

these organismal groups were also structured by soil depth. Vertical differences in bacterial 

community composition have previously been reported from sub-boreal spruce (Hartmann, et 

al. 2012) and pine dominated montane forest (Eilers, et al. 2012), where different bacterial 

taxa tended to show variable abundances with soil depth. We found that the most abundant 

group, Proteobacteria (32% of the reads), was significantly more abundant in the organic layer 

of these deciduous forests, which is in agreement with previous studies in coniferous forests 

(Baldrian, et al. 2012, López-Mondéjar, et al. 2015). In these studies, however, the sampling 

was limited to the litter and humus layers, whereas we investigated communities down to 30 

cm mineral soil depth. Changes in the relative abundance of Verrucomicrobia and 

Bacteriodetes with depth were particularly striking, both being more abundant in the organic 

layer. A similar pattern has been reported previously from coniferous forests for Bacteriodetes 

(Eilers, et al. 2012). Both Bacteriodetes and Proteobacteria are typically copiotrophic bacteria, 

found commonly in combined C- and nutrient-rich environments (Goldfarb, et al. 2011). 

Observed higher dominance of Acidobacteria taxa Gp2 and Gp6 in the C- and nutrient-poor 

deeper mineral soil is in agreement with Fierer, et al. (2007), where higher abundances was 

observed in C-poor bulk soils compared to rhizosphere. As the soil substrate quality become 

poor and resistant to degradation in deeper soil, copiotrophic bacteria are replaced by 

oligotrophic bacteria, such as Acidobacteria, that are able to cope with more recalcitrant 

substrates, or Actinobacteria with a high metabolic plasticity (VanInsberghe, et al. 2013).  

 Although the diversity patterns showed limited changes with soil depth for the micro-

eukaryotes, there was still decline in abundance of nematodes, arthropods and Apicomplexa 

with soil depth. Root-derived carbon enters the soil animal food web via different pathways: 
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animals can either feed (i) directly on living or dead roots, (ii) on bacteria living on root 

exudates or (iii) on fungi that acquire carbon from roots, i.e. mycorrhizae. The positive 

correlation between fungal biomass and micro-eukaryotic abundance may reflect the fungi’s 

importance in driving the community patterns. Since several eukaryotic organisms, including 

protists (e.g. Cercomonas and Lecythium), testate (e.g. Cryptodifflugia) and naked (e.g. 

Acanthamoeba and Leptomyxa) amoebae (Dumack, et al. 2016, Geisen, et al. 2016), 

exclusively feed on fungi, changes in micro-eukaryotic communities with declining fungal 

richness and biomass is expected. High abundance of parasitic Apicomplexa (Gregarines) in 

the organic layer possibly reflects host dependencies (ex. Arthropoda) in the same depth 

(Bates, et al. 2013, Mahé, et al. 2017). In contrast, the higher abundances of Catenulida 

(Metazoa; flat-worms) and Marionina (Annelid; ringed-worms) in mineral soil may be due to 

their burrowing ability. 

 

Depth matters: inter-kingdom co-occurrence patterns 

Co-occurrence and network analyses can be used to explore putative interactions among 

microbial communities. Positive correlations mean that genera co-occur more than by chance, 

which may potentially be due to mutualism, parasitism, predation or alternatively, shared 

niche preferences. On the other hand, negative correlations may suggest competitive 

exclusion, or alternatively, preference for different niches (Röttjers and Faust 2018). Despite 

an overall higher microbial diversity in the forest floor (LHF), the relative amounts of positive 

correlations between genera was similar in the organic and the upper mineral soil, whereas the 

total amount of correlations (positive or negative) was higher in the upper mineral layer. In 

addition to the highest number of co-occurrences in the upper mineral layer, the network here 

was most dense, with higher degree and neighbourhood connectivity. The structural properties 

of network statistics suggest that organisms in the upper mineral layer form more association 
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with each other compared to upper organic and deeper mineral soil layers. The LFH horizon 

is likely the most unstable and disturbed environment due to fresh litter supply from 

aboveground vegetation, and is highly influenced by fluctuating climatic conditions such as 

precipitation and temperature. Compared to forest floor, in the upper mineral soil the 

variability in the environmental conditions is lower whereas the amount of available plant-

derived C is higher compared to deeper mineral layers. Therefore, organisms with competitive 

trait (C strategy) is expected to be more common in this soil layer. This variability in 

microbial trait strategy may result in a shift in the microbial communities from organic to the 

upper mineral layer. While comparing network complexity among arable, grass and forest 

ecosystem, Creamer, et al. (2016), observed a denser microbial network in relatively stable 

forest soils, where a developed food web is expected. Since communities in the C-poor deeper 

mineral soil are relatively stable due to less environmental fluctuations and microbial 

organisms themselves potentially represent a relatively more important carbon source for each 

other (Crowther et al., 2013; Xiong et al., 2017). This may provide higher connectivity among 

microbial communities with more biotic interactions opportunities for C exchange and their 

survival (Milici, et al. 2016). We also would like to highlight that seasonal variation may 

affect network architecture along depth gradients (Ings, et al. 2009), but as our data were 

collected at one time point, they can to be used to validate the impact of time on the network 

architecture. 

As expected, in the mineral soil we found that the network density as well as the 

proportion of positive correlations decreased downwards in the soil profile and, 

correspondingly, negative correlations increased. These findings are corresponding with 

Creamer, et al. (2016), who showed that microbial networks are relatively denser in nutrient-

rich soils, compared to nutrient-poor arable soil and positive interactions are stronger in soils 

with lower organic matter. The relative increase in negative correlations with soil depth may, 
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on one hand, indicate that the relevant taxa have different niches preference, and/or that 

competition for the same resources is increasing with depth, as suggested by Weiss, et al. 

(2016). Only a few organisms with highly specialized enzymatic capabilities can decompose 

organic matter in the lower mineral soil where nutrient availability is low. This, in turn, means 

less freely accessible C to other organisms as well as potentially lower abundance of 

organisms as a C source through predation and parasitism. In the lower mineral soil there is 

less opportunity for organisms to interact due to the lower species richness of all organismal 

groups, which may explain the lower network complexity in the lower mineral (M2 and M3) 

horizons.  

Based on the network analyses alone, we cannot separate the dominant process(es) 

behind the positive correlations, i.e. whether this is an indication of shared niche preferences 

in the soil or biotic interactions in the form of synergetic relationships, commensalism, 

parasitism, or proto-cooperation. Which process(es) are structuring the networks are also 

expected to vary for different organisms. For instance, members of the ubiquitous soil 

bacterial group Firmicutes (Barberán, et al. 2011) such as Vagococcus, Bacillus, 

Enterococcus, Paenibacillus and Macrococcus, which are copiotrophic in nature, tended to 

co-occur more in the upper mineral layer than expected by chance. This may be because they 

share a specific (and yet undefined) niche. The soil yeast fungus Candida, also showed a high 

co-occurrence with members of Firmicutes in the upper mineral layer. This could suggest a 

putative role of the Candida yeasts as a nutrient and energy source for the predatory bacteria 

(Botha 2011) or vice versa, and further they can be opportunists feeding on the product 

decomposed by other bacterial groups (Mašínová, et al. 2018). 
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Conclusions 

In this study we demonstrate vertical niche partitioning for bacterial, fungal and other micro-

eukaryotic communities in forest soils, mirroring concurrent changes in soil properties (H1). 

Dominant taxa varied across the soil profile, and diversity declined significantly with depth 

independent of microbial groups. These results suggest that different soil horizons should be 

taken into consideration when assessing microorganisms in soil. We demonstrate that inter-

kingdom co-occurrence patterns vary dependent on soil layer (H2) and the most complex 

network occurs in upper mineral soil layer. Although the results are correlative in nature, they 

provide hypotheses about depth-dependent biotic interactions in forest soils, calling for more 

detailed experimental studies. Based on our results we also suggest to use a broader set of 

primers and DNA-markers in future community studies to capture a more comprehensive 

picture of the soil microbiota. 
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Fig. 1. Principal component analysis (PCA) of soil chemistry data along depth gradient.  

Samples were collected from five different location (Molde, Stranda, Ørsta, Jølster I and 

Jølster II), along forest floor (LFH) and three mineral soil layers: 0-5 cm (M1), 5-15 cm (M2), 

15-30 cm (M3)).The first PC axis (PC1) score of each plot (shown with dark brown to light 

brown colored circles) was used as a “soil chemistry variability index”, as it reflects variation 

related to the soil nutrients. The second PC axis (PC2) score of each plot was considered as 

“location effect” (it reflects variation in C:N ratio, related to sampling locations). Ellipses 

indicate 95% confidence intervals around centroids for each soil depth and black, skyblue, 

darkblue, red and green colored circles indicate centroid for each sampling location. 

Following soil chemistry data was used in the analysis: total carbon (C%), total nitrogen 

(N%), C/N ratio, soil pH and exchangeable elements H, P, Mn, Ca, Mg, Na, S and K. 
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Fig. 2 Boxplots showing soil depth related diversity patterns for different microbial 

groups. Diversity measure such as richness, Shannon index and evenness are shown for 

bacteria (16S; a-c), fungi (ITS: d-f; 18S: g-i), and micro-eukaryotes (18S: k-l) are shown. 

Samples were collected along a soil depth gradient (forest floor (LFH) and three mineral soil 

layers: 0-5 cm (M1), 5-15 cm (M2), 15-30 cm (M3)) from natural birch forest. Statistically 

significant differences among soil depth were analysed using ANOVA and Tukey´s posthoc 

test. 
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Fig. 3 Nonmetric multidimensional scaling (NMDS) plots displaying the community 

structure of the different microbial groups. Bacterial (a), fungal (ITS: b; 18S: c), and 

micro-eukaryotic (d) community compositional patterns among samples from different soil 

depth (forest floor (LFH) and three mineral soil layers: 0-5 cm (M1), 5-15 cm (M2), and 15-

30 cm (M3)), as revealed by NMDS ordination analysis. The ordination plots are based on all 

Operational Taxonomic Units (OTUs) present in the respective microbial groups. The stress 

value for NMDS ordination was 0.104 for bacteria, 0.166 for fungi (ITS), 0.193 for fungi 

(18S) and 0.135 for micro-eukaryotes. Ellipses indicate 95% confidence intervals around 

centroids for each soil depth. Arrows point in the direction of maximum increase of the 
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variables and size of circle indicates number of OTUs richness. All variables and factor 

shown in the panels had significant effects (P < 0.05) on the ordination configuration. 
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Fig. 4 Barplots displaying abundances distribution of the different microbial taxa 

(phyla). Plots for relative abundances of the bacterial (a), fungal (ITS: b; 18S: c), and micro-

eukaryotic (d) taxa with soil depth (forest floor (LFH) and three mineral soil layers: 0-5 cm 

(M1), 5-15 cm (M2), and 15-30 cm (M3)) are shown here. Statistically significant differences 

among soil depth was analysed using ANOVA and Tukey´s posthoc test. Note the significant 

difference in distribution of fungal groups (Ascomycota) as revealed by the 18S rRNA gene 

markers (c) but pattern absent while using ITS (b). 
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Fig. 5 Hierarchical heatplots illustrating abundances distribution of the different 

microbial taxa (genus or class level). Plots for bacterial (a), fungal (ITS: b ; 18S: c), and 

micro-eukaryotic (d) taxa with different soil depth (forest floor (LFH) and three mineral soil 

layers: 0-5 cm (M1), 5-15 cm (M2), and 15-30 cm (M3)) are shown here. All taxa shown in 

the plots are analysed using ANOVA and Tukey´s posthoc test and differ significantly 

(p<0.05) in abundances among soil depth. Colour gradients in the plots from white to grey to 

black indicates increasing dominance of the taxonomic groups in particular soil depth. 

Different color in bacterial and fungal genus name indicates respective phyla and in case of 

micro-eukaryotes color represent different taxa at higher taxonomic level. Different colors are 

used to indicate phyla for bacteria, fungi and micro-eukaryotes 
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Fig. 6 Inter-kingdom correlation patterns of bacterial, fungal and eukaryotic genera. 

The network is based on a SparCC correlation analysis for the forest floor (LFH) (a) and 

mineral soil layers 0-5 cm (M1) (b), 5-15 cm (M2) (c) and 15-30 cm (M3) (d). Pie charts from 

each panel represents number of total correlations (positive as green and negative as red) in 

Network from each depth. Positive correlations (SparCC > 0.7, p < 0.05) are drawn as green 
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edges and negative correlations (SparCC < 0.7, p < 0.05) are drawn as red edges. Nodes 

represents genera and are coloured according to taxonomic group: bacteria in orange, fungi in 

red, and micro-eukaryotes in blue. The size of a node is proportional to connection it forms 

with other nodes. The thickness of the connection between two nodes is proportional to the 

value of correlation coefficients. The network in transparent grey is a reference network 

combining the correlations for all four depth layers. Boxplots (f-h) show the upper and lower 

quartile, and the average value for important network statistics for all four depths: degree (e), 

neighbourhood connectivity (f), clustering coefficient (g) and average path length (h). The 

degree of a genus is the number of co-occurrences it has with other genera (i.e. the number of 

connections (edges) formed by a node to other nodes). The neighbourhood connectivity is the 

average connectivity (correlations) of neighbours of a given node (i.e. nodes correlated to a 

given node can themselves be correlated to other nodes). The clustering coefficient describes 

whether the network can be sectioned into clusters of highly interconnected organisms. 

Highly clustered networks are those that contain groups of statistically associated organisms. 

A high clustering coefficient is an indication of a high degree of interactions and associations. 

The Average path length is the distance (counted as number of edges) between all pairs of 

associated genera (divided by the number of genera in the network. A low average path length 

indicates that most species in the network are connected through a few intermediates’ species.  

  

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/advance-article/doi/10.1093/fem
sec/fiab022/6129799 by guest on 16 February 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

Table 1. Results from PERMANOVA analyses, testing to which degree soil chemistry 

variability index (PC axis 1) and location effect (PC axis 2) can explain compositional 

variation in the different microbial groups. 

Variables Df SS MS F-model R2 P-value 

Bacteria 

Soil chemistry variability index 1 1.76 1.76 33.22 0.35 < 0.001 
Location effect 1 0.31 0.31 5.84 0.06 < 0.001 
Residuals 57 3.03 0.05 0.59 
Total 59 5.10 1   

Fungi (ITS) 

Soil chemistry variability index 1 2.13 2.13 11.92 0.15 < 0.001 
Location effect 1 1.60 1.60 9.00 0.12 < 0.001 
Residuals 57 10.17 0.18 0.73 
Total 59 13.90 1.00   

Fungi (18S) 

Soil chemistry variability index 1 1.42 1.42 10.23 0.14 < 0.001 
Location effect 1 0.92 0.92 6.58 0.09 < 0.001 
Residuals 55 7.66 0.14 0.77 
Total 57 10.00 1   

Micro-eukaryotes 

Soil chemistry variability index 1 1.84 1.84 13.13 0.18 < 0.001 
Location effect 1 0.56 0.56 3.98 0.06 < 0.001 
Residuals 55 7.71 0.14 0.76 
Total 57 10.11 1.00       

 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/advance-article/doi/10.1093/fem
sec/fiab022/6129799 by guest on 16 February 2021


