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Abstract
Volatile nitrogen oxides (N2O, NO, NO2, HONO, …) can negatively impact climate, 
air quality, and human health. Using soils collected from temperate forests across 
the eastern United States, we show microbial communities involved in nitrogen (N) 
cycling are structured, in large part, by the composition of overstory trees, leading 
to predictable N-cycling syndromes, with consequences for emissions of volatile ni-
trogen oxides to air. Trees associating with arbuscular mycorrhizal (AM) fungi pro-
mote soil microbial communities with higher N-cycle potential and activity, relative to 
microbial communities in soils dominated by trees associating with ectomycorrhizal 
(ECM) fungi. Metagenomic analysis and gene expression studies reveal a 5 and 3.5 
times greater estimated N-cycle gene and transcript copy numbers, respectively, in 
AM relative to ECM soil. Furthermore, we observe a 60% linear decrease in vola-
tile reactive nitrogen gas flux (NOy ≡ NO, NO2, HONO) as ECM tree abundance in-
creases. Compared to aerobic conditions, gas flux potential of N2O and NO increase 
significantly under anaerobic conditions for AM soil (30- and 120-fold increase), but 
not ECM soil—likely owing to small concentrations of available substrate (NO−

3
) in 

ECM soil. Linear mixed effects modeling shows that ECM tree abundance, microbial 
process rates, and geographic location are primarily responsible for variation in peak 
potential NOy flux. Given that nearly all tree species associate with either AM or ECM 
fungi, our results indicate that the consequences of tree species shifts associated 
with global change may have predictable consequences for soil N cycling.
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1  | INTRODUC TION

One of the major pathways for nitrogen (N) loss in forest soil is 
through volatilization of reduced N (e.g., nitrogen oxides). Studies 
in North America have illustrated that anthropogenic sources of ni-
trogen oxides to air have declined significantly over the past two 
decades, including an estimated 4% decrease since 2005 (Jiang 
et al., 2018; Romer et al., 2018; Simon et al., 2015). However, in-
creases in the use of N-based fertilizers (Bouwman et al., 2002; Lu 
& Tian, 2017), warmer global temperatures (Hansen et al., 2010), 
and land-use change (Jain et al., 2013; Wang et al., 2017) have in-
creased the importance of non-anthropogenic sources, such as soil, 
to the global N budget. Nitrous oxide (N2O) and the suite of vol-
atile reactive nitrogen oxide compounds (NOy ≡ NO, NO2, HONO, 
etc.) are major products that have profound effects on climate and 
atmospheric chemistry. N2O is one of the most potent greenhouse 
gases with roughly 300 times the global warming potential of carbon 
dioxide (CO2), and has been shown to deplete stratospheric ozone 
(O3) (Finlayson-Pitts & Pitts Jr., 2000). Additionally, NOy species 
drive photochemical ozone production, are precursors to acid rain 
(via HNO3), and influence the oxidizing capacity of the atmosphere 
by sustaining photocatalytic cycles of HOx (Bouwman et al., 2002; 
Steinkamp et al., 2009). While N emissions from agricultural systems 
are well characterized, significantly less is known about the sources 
and sinks of nitrogen oxides in natural ecosystems, such as upland 
forest soils, as well as the environmental properties and conditions 
that influence N2O and NOy flux.

Microbial oxidation and reduction drive the vast majority of soil 
nitrogen oxide fluxes. The biological cycling of N2O and NOy can be 
directly linked to various microbial processes, primarily nitrification 
and denitrification but also assimilatory and dissimilatory nitrate re-
duction (ANRA/DNRA; Figure 1). The rate-limiting step for nitrogen 
oxide production is generally considered to be associated with nitri-
fication, which is defined as a cascade of oxidative metabolism from 
ammonia to nitrate. This process can be identified by the activities of 
ammonia-oxidizing archaea (AOA) and bacteria (AOB) as well as ni-
trite-oxidizing bacteria (NOB), which have all been linked to N2O and 
NOy production under aerobic conditions (Mushinski et al., 2019; 
Robertson & Tiedje, 1987; Scharko et al., 2015). Specifically, nitrifi-
cation-derived NOy and N2O have been correlated to the abundance 
of nitrification genes and transcripts (Soares et al., 2016). The most 
common targets include genes associated with ammonia monoxy-
genase (AMO), hydroxylamine oxidoreductase (HAO), and nitrite 
oxidoreductase (NXR). Although aerobic nitrifiers are considered 
rate limiting and can contribute to fluxes of N2O and NOy, most 
emissions are thought to be a function of denitrifying heterotrophic 
microbes, albeit through processes associated with reducing condi-
tions such as assimilatory and dissimilatory nitrate reduction, as well 
as the multi-step reduction of nitrite to N2 (Ambus & Zechmeister-
Boltenstern, 2007). Microbial groups associated with denitrification 
are highly diverse, but their relative abundance and activity can be 
determined by quantifying the abundance of gene and transcript 
copies associated with reduction of nitrate (NAR/NAP), nitrite 

(NIR), nitric oxide (NOR), and nitrous oxide (NOS) (Levy-Booth 
et al., 2014). Reducing conditions lead to upregulation of these de-
nitrification genes, a situation commonly found in anaerobic soil 
microsites, resulting in hotspots of N2O and NOy flux (Kuzyakov & 
Blagodatskaya, 2015). Therefore, there is a need to quantify nitro-
gen oxide fluxes and the associated microbial responses to varying 
oxygen conditions.

Forest soil microbial communities are strongly influenced by 
vegetation composition (Lladó et al., 2017). Considering that for-
ests are currently experiencing large-scale shifts in tree species 
composition (Jo et al., 2019), due to natural and anthropogenic ef-
fects such as climate change, atmospheric deposition, alterations 
in disturbance, habitat fragmentation, and exotic species invasion, 
there is a need to develop robust frameworks for investigating 
the microbial and biogeochemical consequences of such changes. 
Forests within the United States are comprised of a mixture of 
tree species that associate primarily with either arbuscular my-
corrhizal fungi (AM) or ectomycorrhizal fungi (ECM). Examples of 
AM tree genera include maple (Acer), tulip (Liriodendron), cherry 
(Prunus), and ash (Fraxinus) while ECM tree genera include oaks 
(Quercus), hickory (Carya), and beech (Fagus). Given that AM 
and ECM trees possess different nutrient use traits (Keller & 
Phillips, 2019; Lin et al., 2017) and promote unique soil microbial 
assemblages (Cheeke et al., 2017), the relative abundance of AM 
or ECM trees in a stand may be an effective integrator of various 
ecosystem processes (Phillips et al., 2013). Researchers have used 
the AM and ECM categorization to reflect distinct biogeochemical 
syndromes (e.g., AM: inorganic nutrient economy, fast N cycling; 

F I G U R E  1   Simplified diagram showing the enzymatic steps 
for nitrification, assimilatory and dissimilatory nitrate reduction 
to ammonia (ANRA/DNRA), and nitrogen fixation processes. 
Dashed lines indicate production of gaseous byproducts of enzyme 
activity. Enzymes are noted above pathways. AMO: ammonia 
monooxygenase; HAO: hydroxylamine oxidoreductase; NOX/NXR: 
nitrate oxidoreductase; NAS/NAR/NAP: nitrate reductase; NRF/
NIR: nitrite reductase; NOR: nitric oxide reductase; NOS: nitrous 
oxide reductase; NIF: nitrogenase reductase
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ECM: organic nutrient economy, slow N cycling). Consequently, 
“mycorrhizal gradients” (defined as plots varying in their relative 
abundance of AM vs. ECM trees within an ecosystem) have been 
proposed as an appropriate experimental “proving ground” for ex-
ploring the effect of species shifts on biogeochemical processes in 
these forest ecosystems (Jo et al., 2019).

Numerous studies have observed that AM and ECM forests 
differ with respect to N cycling (Craig et al., 2018; Lin et al., 2017; 
Midgley & Phillips, 2014; Zhu et al., 2018). AM soils tend to possess 
low C:N ratios, large pools of inorganic N, and high rates of nitrifi-
cation and are generally referred to as having “open” N cycles (e.g., 
high N loss relative to N recycled); conversely, ECM soils possess 
wide C:N ratios, large pools of organic N, and low rates of net nitri-
fication and are referred to as having “closed” N cycles. Read (1991) 
first illustrated differences between AM and ECM soil N cycling, hy-
pothesizing that ECM soils have lower nitrogen mineralization rates 
(relative to AM soils) owing to the large amounts of N bound to soil 
organic matter. More recently, Phillips et al. (2013) hypothesized that 
the abundance of AM and ECM trees in a plot, stand, or region may 
provide an integrated index of N cycling. The framework proposed 
by Phillips is supported by a recent meta-analysis (Lin et al., 2017), 
which used a global dataset to illustrate that inorganic N concen-
trations, net N mineralization, and nitrification rates are all higher 
in AM relative to ECM forests; however, we have a limited under-
standing of the underlying microbial contributions to the patterns, 
and the consequences for N retention and loss. Furthermore, the 
high rates of N-cycle activity in AM soil, under aerobic conditions, 
may be exacerbated by anaerobicity. Thus, comparing N-gas fluxes 
and microbial activity under a factorial combination of aerobic and 
anaerobic activity in AM and ECM soil will help better define these 
hotspots and hot moments in forest soils.

Recently, Mushinski et al. (2019) reported that AM soils produce 
significantly higher fluxes of NOy under aerobic conditions, relative 
to ECM soils at a single site. However, the following questions re-
main: To what extent do microbial communities involved in N cycling 
differ across mycorrhizal gradients within temperate forests, what 
are the influences of aerobic and anaerobic conditions on N-cycle 
processes in AM and ECM soils, and what environmental variables 
best explain N fluxes in AM and ECM forests? In this study, we used 
metagenomic analyses and microcosm experiments to investigate 
the potential for gaseous emissions of nitrogen oxides in AM- and 
ECM-dominated soils as well as along a gradient of AM to ECM soils 
throughout the eastern United States. Additionally, the response of 
key microbial transcripts coding for enzymes AMO, NIR, and NOS 
in AM- and ECM-dominated plots were analyzed by reverse tran-
scription quantitative PCR (RT-qPCR). We hypothesized that (a) for-
ests with more “open” N cycles (e.g., AM-dominated stands) contain 
microbial communities with greater numbers of N-cycling taxa and 
genes that are specifically related to the production of volatile nitro-
gen oxides, (b) anaerobic soil conditions lead to significant increases 
in nitrogen oxide production and transcript copy numbers of denitri-
fication genes in both AM and ECM soil; however, fluxes will still be 
higher in AM soil relative to ECM soil, and (c) the combined effects 

of N-cycle process rates and the relative abundance of N-cycle taxa 
will explain a significant amount of variation in the peak flux of soil 
NOy and N2O.

2  | MATERIAL S AND METHODS

2.1 | Site description

Soils were collected in August 2017 from eight AM- and eight ECM-
dominated plots (dominance implies >85% of the basal area of the 
plot) at the Indiana University Research and Teaching Preserve. 
This site will herein be referred to as “Moores Creek.” Each plot at 
Moores Creek was 20 × 20 m. Additionally, soil was sampled in the 
summer of 2019 from a 54-plot AM to ECM gradient throughout the 
eastern United States—herein referred to as “gradient plots.” This 
gradient consisted of six sites, each containing nine 20 × 20 m plots 
that varied the relative proportion of AM and ECM trees (e.g., from 
0% to 100% AM/ECM tree abundance at each site). Gradient plots 
were located within research forests of the Smithsonian ForestGEO 
network (https://fores tgeo.si.edu/sites -all). For both Moores Creek 
and the gradient plots, trees were categorized by mycorrhizal as-
sociation, and the percent of ECM trees (based on basal area) was 
determined according to Phillips et al. (2013). Site locations for 
plots used in this study can be found in Figure 2. Dominant soil 
orders in this study are inceptisols [Moores Creek (MC) and Lilly 
Dickey Woods (LDW)], alfisols [Smithsonian Conservation Biology 

F I G U R E  2   Map of sampling locations across the eastern United 
States used in this study. The green dot indicates Moores Creek 
where AM and ECM dominated plots are located while the red dots 
indicate sites associated with the 54-plot gradient. The Moores 
Creek site contains 16 total plots (8-AM and 8-ECM dominated) 
while each site in the 54-plot gradient contains nine plots of 
varying AM/ECM composition

https://forestgeo.si.edu/sites-all
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Institute (SCBI)], ultisols [Smithsonian Environmental Research 
Center (SERC)], spodosols [Harvard Forest (HF) and Wabikon Lake 
Forest (WLF)].

2.2 | Soil sampling

Within each plot (both Moores Creek and gradient plots), five soil 
cores (5.08 cm diameter) were collected at 0–5 cm. These indi-
vidual soil cores were pooled by plot to increases mass and reduce 
environmental heterogeneity, resulting in 16 composited samples 
for Moores Creek and 54 composited samples for the gradient 
plots. From each composited sample, approximately 5 g of soil was 
immediately subsampled for molecular analysis and suspended in 
a preservation buffer (DNA/RNA Shield, Zymo Research), then 
shipped back to Indiana University whereupon the preservation 
buffer was removed, and soil was stored at −80°C. The remain-
ing composited sample was transported on ice packs to Indiana 
University where a 40 g aliquot of soil was dried at 105°C for 
gravimetric moisture and a 25 g aliquot was air-dried for soil pH 
analysis. The remaining field-moist soil was passed through a 
2 mm sieve to further homogenize the soil, and to remove large 
organic matter fragments and rocks. Sieved soil was then stored at 
4°C until further analysis.

2.3 | Overview of laboratory analyses

Soils from both Moores Creek and the gradient plots were ana-
lyzed for a common suite of physicochemical properties, including 
soil carbon and nitrogen content, soil pH, net nitrogen minerali-
zation rate, and net nitrification rate. Gas fluxes (CO2, NOy and 
N2O) were also analyzed for both sets of soils using microcosm 
incubations. Additionally, concentrations of oxalate-extractable 
iron and particle size analysis were analyzed for gradient plot soil. 
These physicochemical properties and gas flux measurements 
were used primarily to explore hypothesis 1 and 3, where we de-
fine gas fluxes in relation to microbial community composition 
and which soil factors explain the majority of variation in NOy and 
N2O gas flux. DNA extracted from both Moores Creek and gradi-
ent plot soil was subjected to shotgun metagenomic sequencing; 
however, sequencing depth differed between the two groupings. 
Moores Creek soil DNA was used for deep shotgun sequencing 
(200 million reads per sample) whereas gradient plot soil DNA was 
used for a shallower analysis (12 million reads per sample). Both of 
these datasets were used to address hypothesis 1 and 3. Moores 
Creek sieved soil was used to determine the relative influence of 
aerobic and anaerobic conditions on AM and ECM; specifically, the 
N-cycle microbial response, N-cycle rates, and fluxes of N gases. 
This set of experiments addresses hypothesis 2 where we predict 
that anaerobic conditions will stimulate N-cycle processes in AM 
soil more so than ECM soil. Detailed procedures are noted in the 
subsequent paragraphs.

2.4 | Soil physicochemical analysis

Soil pH was measured using an Orion pH meter (ThermoFisher 
Scientific, Waltham, MA, USA) on a 1:2 solution of air-dried soil in 
a 0.01 M CaCl2 solution. A 40 g sample of soil was dried at 105°C 
for 48 hr to calculate bulk density and gravimetric water content 
(GWC) as described in Mushinski et al. (2019). Ten grams of sieved 
soil was dried at 60°C for 48 hr, ground to a powder, and analyzed 
for soil total carbon (TC) and nitrogen (TN) using a Costech ECS 4010 
elemental analyzer (Costech Analytical Technologies Inc.). Nitrate 
(NO−

3
) pools were quantified from 4 g of sieved, field-moist soil with 

15 ml of 2 M KCl within 36 hr of soil being taken from the ground and 
analyzed using a Lachat QuikChem 8000 Flow Injection Analyzer 
(Lachat Instruments). Total net nitrification and mineralization rates 
were calculated as the accumulation or depletion of inorganic N 
(mineralization: NH+

4
+NO

−

3
; nitrification: NO−

3
) over the course of a 

14 day incubation. Soil texture was determined using a standard hy-
drometer procedure (Ulmer et al., 1994). Some plots had extremely 
high organic matter content in 0–5 cm depth increments, so plot 
level soil texture was derived from 5 to 15 cm increments. We quan-
tified oxalate-extractable Al and Fe pools in all soil samples as an 
index of poorly crystalline Al- and Fe-oxides (Schwertmann, 1973); 
specifically, 0.40 g air dried pulverized soil was suspended in 40 ml 
0.2 M NH4-oxalate at pH 3.0 in the dark for 4 hr, gravity filtered, and 
analyzed with an atomic-absorption spectrometer (AAnalyst 800, 
Perkin Elmer), using an acetylene flame and a graphite furnace for 
the atomization of Fe and Al, respectively.

2.5 | Measurement of aerobic soil gas fluxes

All soils (normalized to 40% gravimetric water content) were prein-
cubated in 100 mm diameter polystyrene petri dishes, in the dark 
for 24 hr at 20°C. Following soil preincubation, the petri dishes 
were loaded into 2 L glass jars, herein referred to as chambers, which 
were capped with polytetrafluoroethylene (PTFE) lids containing 
PTFE inlet and outlet ports. All glass and polystyrene surfaces were 
coated with an inert perfluorinated polymer film (Fluoropel PFC 
801A, Cytonix Corp.) and Teflon tubing and PTFE fittings were used 
to reduce adsorption of reactive nitrogen oxides that could interfere 
with measurements. During incubation, the flux chambers were cov-
ered in black cloth to prevent photochemical conversions of reactive 
nitrogen oxides on soil surfaces.

Each experiment utilized five flux chambers; one contained an 
empty petri dish to act as the blank and four contained a petri dish 
with soil. During the course of the incubation, ultrapure zero-air was 
continuously flowed through a 5 Å molecular sieve and into a six-way 
PTFE manifold, delivering a continuous flow through each chamber 
[2,000 cm3/min, 1 atm, 0% relative humidity (RH)]. A solenoid array 
controlled by a microprocessor (R2 Series, OPTO 22) selectively 
sampled the outflow of gas from each of the chambers during their 
measurement period over the course of the 48 hr experiment cycle. 
Gas flow from each soil-containing chamber was selectively sampled 
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continuously for 10 min each hour, whereupon concentrations of 
CO2, N2O, NO, NO2, and HONO were analyzed. Measurements of 
the blank chamber flanked each soil measurement time period and 
were averaged over the course of each hour to determine back-
ground trace gas concentrations used in flux calculations.

Nitric oxide fluxes were measured using a modified chemilumi-
nescence NOx analyzer (Air Quality Design, Inc.). The chemilumines-
cence instrument was equipped with a photolytic cell containing two 
LEDs with peak wavelengths at 385 and 395 nm. This allowed for 
the measurement of nitrogen dioxide (NO2) and nitrous acid (HONO) 
fluxes through differential photolysis (Reed et al., 2016). N2O fluxes 
were measured using an LGR ICOS (off-axis integrated cavity out-
put spectroscopy) N2O/CO Analyzer (Los Gatos Research Inc.). Soil 
water content was calculated from air moisture concentration using 
linear regression of known gravimetric water content (GWC) at time 
0 and 48 hr. Specifically, water vapor concentration of each chamber 
was regressed against actual GWC at time 0 hr (40% GWC) and 48 hr 
(0% GWC) to define an equation for GWC estimation based on water 
vapor. The equation was verified by measuring GWC at various time 
points between 0 and 48 hr. Carbon dioxide fluxes were measured 
using a LI-COR CO2/H2O analyzer (LI-840 A, LI-COR Inc.) and were 
used as a proxy for microbial respiration.

To calculate flux, concentrations of CO2, N2O, NO, NO2, and 
HONO were compared to a blank chamber using Equation (1).

In Equation (1), τ is the residence time of gas in the chamber, 
Ftot is the flow of the carrier gas, msoil is the mass of soil, and Csoil 
and Cblank are the concentrations of analyte gas i measured in the 
soil-containing and blank chambers, respectively. Positive fluxes de-
scribe net transfer of gases from soil to air (outgassing), while nega-
tive fluxes represent net transfer from air to soil (i.e., deposition or 
consumption). Flux data used for regression analysis were the peak 
flux value from each 48 hr experiment. NOy fluxes are defined as the 
combined fluxes of NO, NO2, and HONO.

2.6 | DNA extraction, shotgun sequencing, and 
metagenomic analysis

Moores Creek soil was used for deep shotgun sequencing (200 million 
reads per sample) and subsequent metagenomic analysis. This depth 
of sequencing has been shown to provide accurate representation of 
the relative counts of genes for a given sample (Gweon et al., 2019). 
For all 16 samples, soil DNA was extracted from 0.3 to 0.4 g field-
moist soil using a DNeasy PowerSoil Kit (Qiagen) and then six of the 
extracts were selected for downstream analysis using a random num-
ber generator. The purity of subsampled DNA extracts was measured 
using an Epoch microplate spectrophotometer (BioTek) and monitor-
ing the absorbance (Aλ) at λ = 260 and 280 nm. Mean A260/A280 ratios 
were 1.94 ± 0.04 (mean ± SD), indicating that protein and/or residual 

reagent contamination was minimal. Extracts were further verified by 
gel electrophoresis where no RNA bands were observed. Roughly 3 μg 
of extracted DNA per sample was then sent to the DOE Joint Genome 
Institute (https://jgi.doe.gov/) for library preparation and shotgun 
sequencing on an Illumina NovaSeq 6000. Resulting raw Illumina 
reads were trimmed, quality filtered, and corrected using BFC (ver-
sion r181) with the following options: −1 -s 10g -k 21 -t 10 (Li, 2015). 
Reads were then assembled using SPAdes assembler 3.12.0 using the 
following options: -m 2000–only assembler –k 33,55,77,99,127–meta 
–t 32 (Nurk et al., 2017). The entire filtered read set was mapped to 
the final assembly and coverage information generated using bbmap 
(version 38.22) using default parameters except ambiguous = random 
(https://bbtoo ls.jgi.doe.gov). The version of the processing pipeline 
was jgi_meta_run.py (version 2.0.1). The assembly pipeline resulted 
in 1.95 × 108 aligned reads per sample with no significant difference 
between AM and ECM samples. Aligned reads were then subjected 
to the IMG/M pipeline where estimated gene copies associated with 
N-cycle activity within the Kegg Pathway (KO) database (https://www.
genome.jp/kegg/pathw ay.html) were quantified. Estimated gene copy 
numbers were calculated as the number of genes multiplied by the av-
erage coverage of the contigs, on which these genes were predicted 
(Huntemann et al., 2016). Table S1 defines the specific KO associ-
ated with this analysis. Statistical differences between the number of 
N-cycle genes within AM and ECM metagenomes was assessed using 
Fisher's exact test.

N-cycle taxa distribution and functional potential was analyzed 
using DNA from the gradient plots. This was done to determine if 
N-cycle microbial trends seen in AM- and ECM-dominated plots 
were consistent across a large spatial gradient. Soil DNA from 54 
plots of varying AM and ECM aboveground composition was ex-
tracted and quality-checked using the same methods mentioned 
above. Shotgun sequencing of extracted DNA took place at Indiana 
University's Center for Genomics and Bioinformatics (https://cgb.
india na.edu/) on an Illumina Hi-Seq platform, resulting in 1.16 × 107 
reads per sample and a mean quality score (Q-score) of 34.6 ± 0.1 
(mean ± SD). Raw FASTQ files were analyzed using the MG-RAST 
pipeline where they were initially dereplicated to remove sequence 
artifacts (Gomez-Alvarez et al., 2009), screened to remove con-
taminant reads (Langmead et al., 2009), and trimmed to remove 
low-quality sequences using DynamicTrim at a minimum phred 
score of 15 (Cox et al., 2010). Resulting reads were taxonomically 
and functionally annotated against NCBI’s RefSeq and KEGG’s KO 
database, respectively. Data were further screened to include only 
N-cycle genes (KO) and associated taxa. N-cycle reads were normal-
ized as a relative abundance value per the total number of N-cycle 
functional or taxonomic reads per sample.

2.7 | AM and ECM soil response to 
anaerobic conditions

Using Moores Creek soil, two analytical aliquots per sample (30 g) 
were placed in petri dishes and normalized to 40% GWC, which 

(1)Flux=
1

�

×

Ftot

(

Csoil−Cblank

)

msoil

https://jgi.doe.gov/
https://bbtools.jgi.doe.gov
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://cgb.indiana.edu/
https://cgb.indiana.edu/
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corresponded 68 ± 16% water filled pore space (WFPS). Samples 
were then pre-incubated in the dark at 23°C for 24 hr. Following 
pre-incubation, the first analytical replicate was placed into a 
sampling chamber, noted previously, whereupon ultrapure zero-
air was continuously flowed throughout the chamber (2 L/min,  
1 atm, 0% relative humidity) for 24 hr and concentrations of CO2, 
N2O, and NO were continuously quantified from the outflow of 
gas. The second analytical replicate was placed in the same sam-
pling chamber, but instead of air, ultrapure N2 (>99% N2) was 
flowed through the system for 24 hr to simulate anaerobic condi-
tions. Measurements of gases from the anaerobic replicate were 
performed in an identical manner to the aerobic replicate. By the 
end of the experiment, all soils had reached 22 ± 3% GWC. To 
calculate flux, concentrations of CO2, N2O, and NO for the aerobic 
and anaerobic samples were compared to a blank chamber using 
Equation (1).

Net nitrification was also assessed under aerobic and anaerobic 
conditions. Specifically, 10 g of sieved, field fresh Moores Creek soil 
was weighed out, in duplicate, into 125 ml Wheaton bottles and 
capped with airtight butyl stoppers. One replicate (aerobic) was 
flushed with ultra-pure air (20% O2, 80% N2) for ~ 1 min, while air 
from the other replicate was evacuated and replaced with helium 
(anaerobic). Fresh air or helium was flushed through the incuba-
tions every 24 hr; field-level soil moisture was sustained throughout 
the experiment. Aerobic and anaerobic soil were incubated in the 
dark for 14 days and then soil was extracted with 25 ml of 2 M KCl, 
whereupon NO−

3
 was quantified as noted previously.

To determine microbial N-cycle gene expression under differ-
ent levels of oxygen availability, AM- and ECM-dominated soils 
from Moores Creek were incubated under different headspace at-
mospheres [aerobic: ultra-pure air (20% O2, 80% N2) or anaerobic: 
helium (100% He)] for 8 and 24 hr. These time points were selected 
because they corresponded to the observed peak flux (8 hr) and the 
end of incubation (24 hr) for the gas flux experiment. Specifically, 
four analytical replicates (10 g) of each soil were placed in 125 ml 
Wheaton bottles. Two of the replicates were flushed with ultra-pure 
air, while the other two were flushed with helium. Soils were then 
incubated in the dark for the allotted time. At 8 hr after the initiation 
of the experiment, one aerobic and one anaerobic replicate were de-
structively sampled and ~0.5 g soil was used for RNA extraction. 
This was also done at 24 hr after the initiation of the incubation. 
Soil RNA was extracted using the RNeasy PowerSoil Total RNA 
Kit (Qiagen) and further purified with the RNase-Free DNase Set 
(Qiagen). To quantify transcript abundance, cDNA was synthesized 
from the purified RNA with the QuantiTect Reverse Transcription 
Kit (Qiagen). Quantitative PCR (qPCR) of cDNA was performed using 
SsoAdvancedTM Universal SYBR® Green Supermix (Bio-Rad) on a 
QuantStudio 7 Flex Real-Time PCR System (ThermoFisher Scientific). 
Each plate included three analytical replicates per biological sample, 
synthetic oligionucleotide standards, and negative controls, also in 
triplicate. Copy numbers for each biological replicate were the aver-
age value of the three analytical replicates. Information on primers 
and thermocycling parameters is provided in Table S2.

2.8 | Statistical analyses

Soil physicochemical and gas flux data were analyzed using a mixed 
effects model where ectomycorrhizal tree abundance was the 
fixed effect and geographic location was the random effect. Data 
for N-cycle taxonomy from all soils were visualized using phylum 
percentage plots and differences in relative abundances were as-
sessed using a two-factor ANOVA where independent variables 
included plot location and mycorrhizal category (Table S3). The 
mycorrhizal category included three levels grouped into AM-soil 
(plots ≥ 85% AM tree species), mixed-soil (<85% AM and ECM tree 
species), and ECM-soil (plots ≥ 85% ECM tree species). Functional 
distribution of N-cycle genes was visualized using a non-metric 
multidimensional scaling (NMDS) plot, based on normalized Bray-
Curtis distance matrices, where individual genes were grouped into 
process groupings. Significant physiochemical properties (p < .05) 
were included as vectors on the NMDS. All analyses were done 
in R, using the anova_test package for ANOVA and vegan for the 
NMDS. Significant differences among gas fluxes under aerobic and 
anaerobic conditions from Moores Creek soil were analyzed with 
a two-way repeated measures ANOVA, where stand-type (AM or 
ECM) and incubation headspace atmosphere [aerobic: ultra-pure 
air (20% O2, 80% N2) or anaerobic: dinitrogen (>99% N2)] were 
fixed effects and incubation time (each hour for gas flux) was in-
cluded as a repeated measure using the anova_test function in R 
and visualized using OriginPro 2018. Transcript copy number were 
analyzed with the same two-way ANOVA procedure noted above. 
To assess the relative importance of vegetation composition, soil 
physicochemical properties, N-cycle process rates, and N-cycle 
microbes on peak flux values of N2O and NOy, we used a mixed 
effects model where the abundance of ECM trees, soil C:N, soil pH, 
percent clay, oxalate extractable iron, and aluminum, the relative 
abundance of N fixers, nitrifiers, and denitrifiers were fixed effects 
and geographic location (sampling sites) were random effects. This 
analysis was done with the lme4 package and visualized with the 
sjPlot package, all in R.

3  | RESULTS

3.1 | Metagenomic analysis

Within gradient plot soil, the N-cycle community accounted for an 
average of 0.37% of all sequencing reads. Of the taxa with N-cycle 
capability, Proteobacteria, Actinobacteria, and Acidobacteria were  
dominant, with the Proteobacteria accounting for 70 ± 6% (mean  
± SD) of the total N-cycle community across all soils (Figure 3a). Of 
the N-cycling Proteobacteria, genera such as Sorangium, Shewanella, 
and Ralstonia were quite abundant in AM soil, and decreased in 
abundance as ECM tree abundance increased (Figure S1). In contrast, 
other dominant genera including Mycobacterium (Actinobacteria) 
and Acidobacter (Acidobacteria) increased significantly as ECM 
tree abundance increased (Figure S1). N-cycle fungi and archaea 
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accounted for less than one percent of the total N-cycle community, 
and were influenced by sample location (Figure 3b,c). The N-cycling 
Crenarcheota, were lower in the ECM soil (AM + Mixed versus ECM: 
p < .05). The overall structure of the N-cycle community was sig-
nificantly influenced by both dominant mycorrhizal classification of 
aboveground tree communities and site location (Figure 3d). N-cycle 
community metrics were also influenced by tree assemblage with 
Simpson's index, Shannon's index, the number of N-cycle taxa, and 
Pielou's evenness all decreasing as the abundance of ECM trees 
increased (Figure S2). Using NMDS, we assessed the relationship 
between the relative abundance of N-cycle genes and soil physico-
chemical factors within the 54-plot gradient (Figure 4). We found 
that peak NOy flux from soil microcosms and soil pH were linked to 
higher abundances of genes in the amo, nap, nor, and nrf operons. 
Net nitrification rate was linked closely to the positive NMDS axis 1, 
along with nitrification genes amoA, hao, and nxrAB. Ectomycorrhizal 
tree abundance was almost exclusively correlated to the negative 

NMDS axis 1, which also correlated with NIR and NOR genes. The 
two other significant vectors (soil C:N and soil organic carbon con-
tent) were not closely associated with any genes other than the ni-
trogen fixation gene, anfG.

Deep shotgun sequencing for Moores Creek soil showed AM 
soil possessed greater potential for all N-cycle transformations ex-
cept nitrogen fixation, which was relatively low in both AM and 
ECM soil (Figure 5). The highest estimated copy number was asso-
ciated with nitrite/nitrate oxidation and reduction pathways, with 
nasA (assimilatory nitrate reductase catalytic subunit) account-
ing for 41% and 73% of all reported N-cycle genes in AM- and 

F I G U R E  3   Relative abundance profiles for nitrogen cycling bacteria (a), fungi (b), and archaea (c) from the 54-plot AM to ECM gradient. 
This subset of phyla account for 0.37% of all sequencing reads. Each segment is the mean relative abundance and the error bars are 
standard error. The mycorrhizal category included three levels grouped into AM-soil (plots ≥ 85% AM tree species), mixed-soil (<85% AM 
and ECM tree species), and ECM-soil (plots ≥ 85% ECM tree species). Sample size for ECM = 25, Mixed = 20, AM = 21. (d) Non-metric 
multidimensional scaling plot for the distribution of N-cycle taxa in relation to mycorrhizal type as well as ellipses (95%) for sampling sites

F I G U R E  4   Non-metric multidimensional scaling (NMDS) plot 
showing the distribution of nitrogen cycling genes (based on 
relative abundance values) and significant environmental properties 
as vectors (p < .05). Data for the NMDS are taken from the 54-plot 
gradient

F I G U R E  5   Estimated gene copies of key nitrogen cycle genes 
defined from metagenomic sequencing. Asterisks indicate level of 
significant difference between dominant mycorrhizal soil types taken 
from AM- and ECM-dominated soil (Moores Creek). Estimated gene 
copy numbers were calculated as the number of genes multiplied 
by the average coverage of the contigs, on which these genes were 
predicted. Error bars indicate standard error of three replicates
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ECM-dominated soil, respectively (Table S1, Figure S3). Analysis of 
N-cycle gene distribution for Moores Creek soil is consistent with 
the gradient plot soil, showing the relative proportion of genes as-
sociated with hydroxylamine oxidation, nitrite reduction, nitrate 
reduction, nitric oxide reduction, and nitrous oxide reduction in-
creased from ECM to AM (Figure 6). Conversely, the relative abun-
dance of N-conservation genes associated with nitrite reduction 
(nirA), nitrate reduction (nasA), and nitroalkane oxidation increased 

in conjunction with increasing ECM tree abundance for gradient 
plot soils (Figure 6).

3.2 | NOy and N2O flux

Across seven sites, peak NOy flux decreased linearly from an aver-
age of 3.5 to 1.5 ng-N g-soil−1 hr−1 as the percentage of ECM trees 

F I G U R E  6   The relative abundance of nitrogen cycle genes across the 54-plot gradient. The mycorrhizal category included three levels 
grouped into AM-soil (plots ≥ 85% AM tree species), mixed-soil (<85% AM and ECM tree species), and ECM-soil (plots ≥ 85% ECM tree 
species). Sample size for ECM = 25, Mixed = 20, AM = 21. Genes highlighted blue are significantly more abundant in AM stands, while those 
highlighted in green are more abundant in ECM stands
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increased from 0% to 100% (Figure 7a). ECM tree abundance ac-
counted for 33% of variation in NOy flux (marginal R2), while ECM 
tree abundance combined with the random site factor accounted for 
56% of NOy flux variability (conditional R2). Peak N2O flux ranged 
from 0.5 to –3 ng-N g-soil−1 hr−1, did not vary by site, and did not cor-
relate to changes in ECM tree abundance (Figure 7b).

3.3 | Aerobic and anaerobic microcosms

Fourteen-day incubations of AM- and ECM-dominated soil (Moores 
Creek soil) under differing incubation headspace atmospheres (e.g., 
aerobic vs. anaerobic) altered concentrations of aqueous oxidized 
nitrogen (Figure S4). Concentrations of NO−

3
 were always greater 

in AM soil than those in ECM soil. For AM soil, aerobic incubation 
led to an increase of 9.3 μg-N g-soil−1 (+98%) relative to field-levels 

(p < .001) while anaerobic incubation resulted in a decrease of 
4.0 μg-N g-soil-1 (−58%; p < .1). In ECM soil, initial levels of NO−

3
 

were 8.6 μg-N g-soil−1 lower than the AM soil. Aerobic and anaero-
bic incubations of ECM soil led to a decrease of 0.8 and 0.9 μg-N 
g-soil−1, which represents a −89% and −95% change, respectively 
(p < .001).

Within Moores Creek samples, gas fluxes from both AM and 
ECM soil were heavily influenced by water content, and generally 
decreased as soil dried (Figure 8). CO2 flux (microbial respiration) 
did not vary in response to incubation atmosphere conditions nor 
mycorrhizal soil type, which is consistent with what was observed 
when peak CO2 flux from the AM to ECM gradient plots was ana-
lyzed in response to ECM abundance (Figure S5). For N2O and NO, 
higher values under anaerobic conditions were observed for the 
AM soil (NO: 145.4 ± 75.5 ng-N g-soil−1 hr−1; N2O: 31.8 ± 30.2 ng-N 
g-soil−1 hr−1). ECM soil fluxes of NOy and N2O were extremely low 
and differences between aerobic and anaerobic conditions were 
negligible (Figure 8). NO flux in AM soil peaked at 13 and 7 hr under 
aerobic and anaerobic conditions, respectively. In ECM soil, flux de-
creased linearly from 0.32 to 0.12 ng-NNO g-soil−1 hr−1 under aerobic 
conditions and from 8.35 to <0.1 ng-NNO g-soil−1 hr−1 under anaer-
obic conditions. Only AM soil produced a definitive peak N2O flux, 

F I G U R E  7   Results from a linear mixed effects model where 
peak NOy (a) and N2O (b) flux were the response variables and the 
percent of ectomycorrhizal trees was the independent variable. 
Data are combined from both sets of sites (Moores Creek and 
gradient plots). Site location was assessed as a random effect. 
The solid red line is the regression equation and dashed lines 
represent the 95% confidence intervals. The p-values indicate the 
significance of the independent predictor (percent ectomycorrhizal 
trees) on peak fluxes of NOy and N2O. Peak fluxes were defined 
as the highest flux value over the course of the 48-hr incubation. 
Marginal R2 indicates the explained variability of gas fluxes solely 
on the effect of the independent predictor while the conditional 
R2 accounts for variation of the independent predictor and the 
random effect (site location)

F I G U R E  8   Gas fluxes (CO2, N2O, and NO) for 24 hr incubations 
under aerobic (ultra-pure air: 20% O2, 80% N2) and anaerobic 
(>99% N2) conditions. Inset for fluxes shows finer resolution of data 
within dashed boxes. Soil used in this experiment is from AM- and 
ECM-dominated plots at Moores Creek. For each data series, N = 8
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which occurred at 5 hr under anaerobic conditions (44.0 ng-NN2O 
g-soil−1 hr−1).

Using RT-qPCR, we determined that transcript abundance 
of AOA and AOB amoA was higher under aerobic conditions for 
Moores Creek soil and tended to decrease with time (Figure S6). For 
AOA amoA, the average number of transcripts was 72% higher in AM 
soil relative to ECM soil (p < .001), while AOB amoA transcript num-
bers were 177% higher in AM soil (p < .001). Regardless of soil type 
or oxygen availability, denitrification transcript abundance followed 
nosZ (Clade I) > nirK > nirS. For AM soil, denitrification transcripts 
were higher under anaerobic conditions; however, in ECM soil, there 
was no difference in transcript copies for the key N-cycle genes be-
tween aerobic and anaerobic incubations. Incubation time (i.e., 8 and 
24 hr) influenced nirK and nosZ (Clade I) where 8 hr < 24 hr, but not 
nirS. Many of the transcript levels for ECM soil were below detection 
limits.

3.4 | Mixed effects models—factors responsible for 
NOy and N2O flux

In gradient soil, fixed effects (ECM tree abundance, C:N, pH, percent 
clay, oxalate extractable iron and aluminum accounted, microbial 
respiration, net N mineralization, net nitrification, and the relative 
abundance of N fixers, nitrifiers, and denitrifiers) accounted for 18% 
and 38% of variation (marginal R2) for peak N2O and NOy flux, re-
spectively (Figure 9). This level of variance was significant for NOy 
but not N2O flux. Conditional R2 was 39% (N2O) and 80% (NOy), 

indicating that the random factor (geographic location) plays a large 
role in nitrogen oxide flux variation across a spatial gradient. For 
N2O flux, soil C:N was the only factor with a significant effect size, 
while variables such as ECM tree abundance, percent clay, microbial 
respiration, net nitrogen mineralization, and net nitrification were 
significantly predictive of NOy flux (Figure 9).

4  | DISCUSSION

4.1 | Metagenomic analyses reveal greater potential 
for N-cycle activity in AM soil

The higher abundance of N-cycle genes such as amoABC, hao, and nxrAB 
in AM-dominated soils are in agreement with previous studies showing 
that under aerobic conditions, AM soils have greater rates of net nitrifica-
tion (Midgley & Phillips, 2016; Mushinski et al., 2019; Phillips et al., 2013), 
which likely explains high rates of aerobic NOy flux shown in AM soils 
(Figure 7). Estimated gene copy numbers for norB and nosZ, which code for 
nitric oxide reductase and nitrous oxide reductase, respectively, were both 
higher in AM-dominated soil (Figure 5) and the relative abundance of these 
same genes were in greater proportion in AM soil along the 54-plot gradi-
ent (Figure 6). This indicates that under reducing conditions, AM soil has the 
genomic potential for volatile nitrogen oxide flux to be much higher relative 
to ECM soil, which was verified by flux measurements conducted under 
anaerobic conditions (Figure 8). NasA was by far the most abundant N-cycle 
gene in Moores Creek soil and was the third most abundant N-cycle gene 
in the gradient plots. NasA was also significantly more abundant in all ECM 
soils tested (Moores Creek and gradient soils). This gene codes for an assim-
ilatory nitrate reductase catalytic subunit which reduces NO−

3
 to NO−

2
 and 

is associated with microbial uptake of NO−

3
. The high estimated nasA copy 

numbers in Moores Creek soil indicate the importance of microbial uptake 
and conservation of oxidized N in these forests systems. Furthermore, the 
high proportion of nasA in ECM soil indicates high uptake and utilization 
of any free NO−

3
, which may partially explain low concentrations of NO−

3
 in 

ECM soil. While AM soils also have high relative abundance of nasA,NO−

3
 

uptake is likely supplemented by high rates of nitrification and ammonifica-
tion, resulting in a very fast N cycle in AM soil.

AM-induced microbial stimulation coupled with higher litter qual-
ity and fast turnover rates may explain why genes associated with 
heterotrophic microbes such as denitrification are significantly higher 
in the AM soil (Figure 5), leading to higher fluxes of nitrogen oxide, 
specifically NOy (Figures 7, 8). AM soils throughout these sites (Craig 
et al., 2018; Midgley et al., 2015) and elsewhere (Craig et al., 2018; 
Keller & Phillips, 2019; Lin et al., 2017) have leaf litter layers of low 
lignin:N ratios (i.e., higher chemical quality). Given the well-estab-
lished relationship between fast cycling litters and N availability in 
forests (Scott & Binkley, 1997), and the relationship between inor-
ganic N pools and nitrification fluxes (Persson et al., 2000), we expect 
microbes responsible for accelerating the N cycle to be more common 
in AM soils. However, differences in the physiology and metabolism 
of mycorrhizal fungi may also contribute to the observed differences 
in microbial community composition between AM and ECM soils. 

F I G U R E  9   Effect size from a linear mixed effects model where 
nitrogen oxide flux (N2O or NOy) was the response variable 
and edaphic parameters including vegetation composition, soil 
physicochemical properties, soil processes, and the relative 
abundance of nitrogen cycling microbial guilds were fixed 
predictive variables. Data were used from the gradient plots. 
Geographic location was used as a random effect. R2 for NOy was 
0.39/0.80 (marginal R2/conditional R2) and 0.18/0.38 for N2O. 
Model intercepts: NOy = 3.43 ± 5.21; N2O = −5.45 ± 6.32



     |  11MUSHINSKI et al.

Although ECM fungi possess hydrolytic capabilities that can result 
in the slow liberation of organic C and N from complex SOM (Kohler 
et al., 2015; Lindahl & Tunlid, 2015), AM fungi can release labile car-
bon into the hyphosphere, leading to greater stimulation of hetero-
trophic microbes (Herman et al., 2012; Kuzyakov, 2010; Paterson 
et al., 2016; Talbot et al., 2008), and possibly greater litter decay rates 
(Bunn et al., 2019). ECM fungi produce significant amounts of myce-
lium which may function as a large sink of inorganic N (Högberg & 
Högberg, 2002), possibly shaping the free-living N-cycle community 
in ECM soil toward more N conservation rather than processes lead-
ing to N loss such as nitrification and denitrification. Quantification 
of AM and ECM fungi within these soils would better elucidate the 
importance of these potential mechanisms.

It is unknown how differences in AM and ECM microbial 
community influence precursory processes to nitrification, such 
as ammonification. Pools of ammonium were similar in AM- and 
ECM-dominated soil but rates of ammonium accumulation were 
significantly higher in ECM soil (Figure S7), indicating a potential 
bottleneck at the nitrification step. This may be a function of the 
higher acidity observed in ECM soil, which directly influences rates 
of nitrification through the protonation of ammonia to ammonium 
(NH4

+pKa = 9.3); this renders the substrate less available for ni-
trification and other downstream processes, inevitably selecting 
for lower abundances of ammonia oxidizers, as seen previously 
(Mushinski et al., 2019). Soil pH (which positively correlates with 
ECM tree abundance) can also influence N cycling by modifying 
microbial diversity. Less acidic AM soils support greater microbial 
diversity (Fierer & Jackson, 2006) and higher N-cycle potential 
(Figure S2; Figure 5)—heterotrophic microbes involved in mineral-
ization are likely affected by soil pH in the same manner. Further 
inhibition may be mediated by the presence of litter-derived poly-
phenolic compounds, which tend to be more abundant in ECM soil 
(Subbarao et al., 2013). This nitrification bottleneck hypothesis 
is further supported by a supplemental experiment showing that 
when ECM soil is supplemented with inorganic N (nitrite) under an-
aerobic conditions, increases in N2O production and denitrification 
transcripts are observed (Figure S8). This indicates that ECM soil 
is inherently able to produce nitrogen oxides, but the process is 
repressed due to a lack of available substrate, likely as a result of 
the inhibition of nitrification.

4.2 | Oxygen availability alters N-cycle rates and 
microbial activity in AM soil

Variations in oxygen availability can drive dramatic changes in ni-
trogen oxide production by stimulating different groups of N-cycle 
microbes. We hypothesized that anaerobic conditions would lead to 
greater emissions of nitrogen oxides for both AM and ECM soil, with 
AM soil producing significantly greater N-gas fluxes under anaero-
bic conditions. Our results partially support this hypothesis; there 
was no significant response from ECM soil to anaerobic conditions. 
Consistent with our hypothesis, AM soil produced more NO and 

N2O relative to ECM soil (Figure 8)—likely a direct result of higher ox-
idized N availability and greater potential for denitrification. This ob-
servation agrees with a field-based study which showed that under 
poorly drained (partially anaerobic) conditions, AM (maple) stands 
produced three to four times more N2O relative to ECM (beech) 
stands (Ullah & Moore, 2011). The difference between anaerobic 
and aerobic NO and N2O flux in AM soil was extremely large, relative 
to ECM soil. NO flux increased by roughly 144 ng-N g-soil−1 hr−1 and 
N2O flux increased by 32 ng-N g-soil−1 hr−1 under anaerobic condi-
tions in AM soil, which was more than the 3 and 0.8 ng-N g-soil−1 hr−1 
increases in ECM soil. The lower flux levels for N2O may be a result 
of greater N2O to N2 conversion, a prediction that agrees with nosZ 
having high gene expression. Furthermore, at its highest flux value 
(i.e., at hour 8 of the incubation), the amount of N being lost from 
AM soil accounted for roughly 2% of the entire pool of NO3 .̄ Soil 
transcript abundance of key N-cycle genes confirmed that observed 
fluxes were the result of biological processes where, under aerobic 
conditions, nitrification transcripts (AOA and AOB amoA) were more 
abundant than denitrification transcripts (nirS, nirK, nosZ), and vice 
versa under anaerobic conditions (Figure S6). It is also worth noting 
that AM forest soil may be inherently more anaerobic due to AM 
fungi promoting soil aggregation through the release of labile or-
ganic compounds (Wright et al., 1999).

The large discrepancy between AM and ECM soil nitrogen 
oxide flux has substantial implications for future forest dynamics. 
Even currently, individual AM trees in ECM-dominated forests likely 
produce soil hotspots of nitrogen oxide flux regardless of soil oxy-
gen condition. Upland forest soils have generally been shown to be 
sources of N2O and NO; however, the magnitude of this source de-
pends on vegetation composition, geographic location, and previous 
land-use history (Butterbach-Bahl et al., 2013; Chapuis-Lardy et al., 
2006; Pilegaard, 2013). Systems with highly conservative N-cycle 
dynamics, as seen in oak-hickory-beech (ECM) forests throughout 
the eastern United States, are presumed to contribute much less 
relative to adjacent agricultural systems; however, fast N-cycling 
AM forests have not been considered. It is likely that these for-
ests do not naturally receive enough N inputs to compare to fluxes 
measured from major US crops such as corn (Decock, 2014) (0 to 
30 kg-NN2O ha–1 year−1) and switchgrass (Ruan et al., 2016) (0 to 6 kg-
NN2O ha–1 year−1), which typically receive large amounts of N fertilizer 
(up to 200 kg-Nfertilizer ha–1 year−1). For reference, temperate forests  
of the eastern United States are estimated to receive 10–15 kg-N/ha–1  
year−1 via atmospheric deposition (Schwede et al., 2018). However, 
our observation that anaerobic soil conditions stimulate microbial 
denitrification and large increases in N2O and NO flux for AM soil is 
noteworthy, especially in light of the proliferation of AM tree species 
throughout the United States (Jo et al., 2019). While it has typically 
been assumed that well-drained upland soils are aerobic, 2%–9% of 
the pore volume can be anaerobic, even when bulk soil O2 concen-
trations are high (Keiluweit et al., 2018). This indicates that in situ 
N gas fluxes from forest soils may be higher than what is currently 
assumed and should be compared to adjacent natural and managed 
ecosystems.
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4.3 | Multiple factors influence the production of 
volatile nitrogen oxides in forest soil

Results from Figure 9 illustrate that reactive NOy fluxes are best ex-
plained primarily by the relative abundance of ECM trees species and 
to a lesser degree, the percentage of clay and soil processes such as 
microbial respiration, net N mineralization, and net nitrification. Except 
for net nitrification, none of these factors were included in a previous 
study (Mushinski et al., 2019). The significant influences of ECM on NOy 
flux is likely due to combined effects of ECM trees in lowering soil pH 
due to acidifying processes associated with litter decomposition. This 
in turn lowers the abundance of available ammonia, nitrifiers, and nitri-
fication rates, which are all directly related to NOy flux. It was surprising 
that soil clay content was a significant factor in this model due to its 
lack of correlation to ECM tree abundance (Figure S5); however, clay 
content is likely important in modulating oxic and anoxic conditions, 
soil porosity, and soil reactivity which may influence NOy production 
(Kebede et al., 2016; Maharjan & Venterea, 2014). Furthermore, the 
amount of variance explained increased from 23% in the initial model 
(Mushinski et al., 2019) to 39% for fixed effects only and 80% for fixed 
effects plus the influence of geographic location (mixed model, this 
paper). Note that the relative abundance of N-cycle microbes was not 
found to be a significant predictive variable for aerobic NOy fluxes. 
Mushinski et al. (2019) identified nitrifying microbes (AOA and AOB) as 
contributing 60%–70% to aerobic NOy flux from inhibitor assays; how-
ever, this was based on activity and not functional potential as shown 
here. RNA-based methods will likely provide better resolution on the 
contribution of specific microbial guilds. Considering the large flux dif-
ferences in response to oxygen availability, similar analyses should be 
carried out to determine the factors responsible for anaerobic flux of 
nitrogen oxides in these systems. The varied responses of N2O and NOy 
in these experiments is difficult to interpret—considering they are both 
products of nitrification and denitrification. However, it may stem from 
multiple factors including unknown abiotic chemistry, an extremely 
efficient conversion of N2O to N2, or simply a function of the micro-
cosms used in this study—it remains to be seen whether the microcosm 
chambers yield the same results as in situ chamber flux measurements. 
Although, studies in grasslands suggest good agreement between the 
two methods (van Dijk et al., 2002).

4.4 | Synthesis

Changes in global climate and other disruptions such as atmospheric 
deposition of anthropogenic N are inducing shifts in the relative 
abundance of AM and ECM trees in temperate forests (Jo et al., 2019; 
Steidinger et al., 2019), with unknown consequences for biogeo-
chemical cycling in these systems. Our study illustrates that the global 
change-induced vegetation shifts currently being observed through-
out the eastern United States (Jo et al., 2019) may significantly alter 
the soil bacterial and archaeal N-cycling communities and have sig-
nificant effects on atmospheric composition, especially in the wake 
of climate change. We hypothesized that forests with more “open” 

N cycles (e.g., AM-dominated stands) contain microbial communities 
with greater numbers of N-cycling taxa and genes that are specifically 
related to the production of volatile nitrogen oxides. Using forests 
throughout the eastern United States (Figure 2), we find support for 
this hypothesis: AM-dominated soils had microbial communities with 
a greater relative abundance of N-cycling genes. This in turn leads to 
greater metagenomic potential for ammonia oxidation, hydroxylamine 
oxidation, nitrite oxidation/reduction, nitrate reduction, nitric oxide 
reduction, and nitrous oxide reduction (Figure 5). Additionally, we ob-
served mycorrhizal-based differences in the N-cycling bacterial con-
sortia (Figure 3a–c), the structure of the N-cycle microbial community 
(Figure 3d) as well as a different proportional profile of N-cycle taxa 
and genes based on mycorrhizal association (Figure 6; Figure S3). The 
spatial variability of nitrogen oxide fluxes was also investigated. We 
found NOy fluxes to be highest in AM soils across the eastern United 
States (Figure 7) and strongly correlated to the relative abundance 
of genes associated with nitrification and denitrification (Figure 4); 
however, the magnitude of flux was dependent on geographic loca-
tion (mixed effects model). We also found support for our hypothesis 
that anaerobic conditions lead to equivalent or greater emissions of 
nitrogen oxides for both AM and ECM soil, with AM soil producing 
more N2O and NOy under anaerobic conditions (Figure 8)—likely a di-
rect result of higher N availability and greater microbial potential for 
denitrification. Furthermore, the low levels of inorganic nitrogen in 
ECM may serve as a bottleneck to nitrogen oxide production in ECM 
soil (Figure S4), which was supported by a positive N2O response fol-
lowing addition of nitrite (Figure S8). Collectively, our results suggest 
that shifts in forest composition may have profound consequences for 
microbial communities involved in N cycling and the tendency of for-
est soil to modulate volatile nitrogen oxides. Furthermore, this study 
indicates that proliferation of AM species into ECM-dominated eco-
systems throughout temperate forest regions may represent a major 
change in the soil N-cycle microbiome, possibly leading to ecosystem-
scale altering of soil N-cycle process rates and high loss of soil N 
through volatilization, regardless of soil oxygen conditions.
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