Bioinformatics, 2025, 41(3), btaf096
https://doi.org/10.1093/bioinformatics/btaf096
Advance Access Publication Date: 12 March 2025

Original Paper

OXFORD

Data and text mining

AJGM: joint learning of heterogeneous gene networks

with adaptive graphical model

Shunqi Yang®, Lingyi Hu', Pengzhou Chen’, Xiangxiang Zeng?, Shanjun Mao™*

'Department of Statistics, Hunan University, Changsha, Hunan, 410006, China
2College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, 410082, China

*Corresponding author. Hunan University, Shijiachong Road, Yuelu District, Changsha, Hunan Province, China, 410006. E-mail: shjmao@hnu.edu.cn.
Associate Editor: Macha Nikolski

Abstract

Motivation: Inferring gene networks provides insights into biological pathways and functional relationships among genes. When gene expres-
sion samples exhibit heterogeneity, they may originate from unknown subtypes, prompting the utilization of mixture Gaussian graphical model
(GGM) for simultaneous subclassification and gene network inference. However, this method overlooks the heterogeneity of network relation-
ships across subtypes and does not sufficiently emphasize shared relationships. Additionally, GGM assumes data follows a multivariate
Gaussian distribution, which is often not the case with zero-inflated scRNA-seq data.

Results: We propose an Adaptive Joint Graphical Model (AJGM) for estimating multiple gene networks from single-cell or bulk data with
unknown heterogeneity. In AJGM, an overall network is introduced to capture relationships shared by all samples. The model establishes
connections between the subtype networks and the overall network through adaptive weights, enabling it to focus more effectively on gene
relationships shared across all networks, thereby enhancing the accuracy of network estimation. On synthetic data, the proposed approach out-
performs existing methods in terms of sample classification and network inference, particularly excelling in the identification of shared relation-
ships. Applying this method to gene expression data from triple-negative breast cancer confirms known gene pathways and hub genes, while
also revealing novel biological insights.

Availability and implementation: The Python code and demonstrations of the proposed approaches are available at https://github.com/yyy

tim/AJGM, and the software is archived in Zenodo with DOI: 10.5281/zenodo.14740972.

1 Introduction

Gene networks play a crucial role in understanding func-
tional relationships and biological patterns among genes
(Saha et al. 2017). Several statistical models have been pro-
posed to infer gene networks from gene expression data,
based on methods such as correlation (Tan et al. 2022), mu-
tual information (Zhao et al. 2016), regression (Duren et al.
2017), and probabilistic graphical models (Wu et al., 2017).
Among these, Gaussian graphical models (GGMs) are widely
favored for their ability to capture conditional dependencies
between variables. This feature allows them to more accu-
rately reflect real-world interactions. GGM assumes that
gene expression data follow a multivariate Gaussian distribu-
tion, and significant conditional dependencies among genes
are identified by estimating the inverse of the covariance ma-
trix, also called the precision matrix. The non-zero off-diago-
nal elements of the precision matrix represent edges in
the network.

In multi-condition gene expression studies, co-expression
profiles across conditions are often related, making it essen-
tial to investigate both similarities and differences in gene net-
works across conditions (El-Kebir et al. 2015, Ficklin et al.
2017). Both shared and condition-specific relationships carry
significant biological implications for understanding the het-
erogeneity and commonality within these networks. In this

context, one method for identifying shared patterns involves
constructing a regularization function that encourages simi-
larities between graphs, a technique known as joint estima-
tion. It has been shown that joint estimation can avoid
suboptimal solutions and detect edges that may be missed in
independent estimation (Lee and Liu, 2015). Among fre-
quentist methods, the joint graphical lasso (JGL) (Danaher
et al. 2014) is the most prominent approach for achieving
this. JGL utilizes two distinct forms of convex penalty func-
tions: one promotes structural similarity by enforcing similar-
ity in precision matrices, while the other encourages shared
sparse structures across subnetworks using a group lasso pen-
alty. In the Bayesian paradigm, inference methods for GGMs
that utilize different prior distributions have proven effective
for high-dimensional sparse data (Williams 2021).

In certain cases, prior knowledge about the class member-
ship is unavailable, preventing the direct application of the
aforementioned methods for network inference. For instance,
scRNA-seq technology can detect random gene expression
variability within a single population (Papalexi and Satija,
2018), but the precise number and classification of subpopu-
lations often remain undetermined. When heterogeneity is
unknown, certain methods integrate graphical models with
mixture distributions to accomplish concurrent clustering
and network estimation (Gao et al. 2016). Compared to
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methods that first perform sample clustering followed by
joint estimation, these approaches allow for mutual adjust-
ment between clustering and network inference (Tan 2022),
resulting in more coherent and accurate identification of sub-
types and their interactions.

The essence of joint estimation lies in measuring relation-
ships between networks by examining partially shared edge
structures. However, existing methods present several limita-
tions in assessing these relationships. First, these methods in-
herently assume equal similarity among networks across
subtypes, an assumption that is problematic due to the het-
erogeneity in genes and subtypes. To address this issue, the
Condition-adaptive Fused Graphical Lasso (CFGL) (Lyu
et al. 2018) is proposed, which allows for adaptive adjust-
ment of similarity in gene relationships. However, CFGL
adjusts similarity weights using binary variables, which fails
to capture the precise degree of similarity between networks.
Second, shared relationships across subtypes are derived by
promoting similarity between precision matrices during joint
estimation and then extracting relationships common to all
networks. This method derives shared relationships through
pairwise network connections but lacks sufficient consider-
ation of the overall sample context.

Considering the limitations of existing models, we propose
a new method named Adaptive Joint Graphical Model
(AJGM) for jointly estimating multiple gene networks, with
its flowchart shown in Fig. 1. AJGM can simultaneously clas-
sify samples and infer networks, while adaptively adjusting
the similarity between network structures. By incorporating
the overall network in the joint estimation, the model’s ability
to identify shared relationships is significantly improved, thus
enhancing the estimation accuracy of gene networks.
Furthermore, to address the challenge posed by a large num-
ber of zeros in single-cell data, we develop a data imputation
method that extends the GGM’s applicability to both
scRNA-seq data and bulk RNA-seq data. The gene networks
estimated by AJGM outperform comparative methods on
simulated data and yield biologically meaningful results in
gene expression data of triple-negative breast cancer.

2 Models
2.1 Modeling subtype gene networks

Suppose that there are 7 samples, each with p genes in expres-
sion data X. Considering the heterogeneity, we assume the 7
samples belong to K subtypes. Therefore, the samples x},/ =
1,...,n come from a Gaussian mixture distribution with the
probability density function:

ey =3y mN (el @), (1)

where N denotes the multivariate normal density, / is the
sample index, z;, is the proportion of subtype k with
Zle 7 = 1, p;, denotes the mean, and Q, represents the pre-
cision matrix of k. The non-zero elements in Q,, represent the
connected edges in the gene network of subtype k.

2.2 Modeling the overall gene network

To improve the model’s ability to recognize shared relation-
ships, we introduce an overall gene network in joint learning.
The overall network can identify shared relationships and
make these edges more likely to appear in all subtype net-
works during joint estimation.

Yang et al.

When modeling the overall gene network, we no longer
consider the samples to belong to different subtypes. We set
X' as overall samples of the original data X for learning the
overall gene network and x},# =1,...,m is assumed to follow
a normal distribution:

p()) = N(wlux, 0x"). @)

The overall network Qx captures shared relationships by
using maximum likelihood estimation, which emphasizes pat-
terns and connections that are consistent across the majority
of samples. In addition, the overall network serves to identify
potential shared relationships and facilitates their presence in
subtype-specific networks. The final estimated network of
shared relationships is obtained by taking the union of all
subtype-specific networks.

There are multiple methods to obtain X'. When specific
overall samples are available, they can be directly utilized. In
cases where such information is lacking, we recommend us-
ing the following two methods to obtain X':

1) Setting X' as X. A straightforward idea is to designate all
samples in X’ as X, since this approach can capture the
complete information for learning shared relationships.
In this case, m, representing the number of overall sam-
ples, is equal to #. However, setting X’ as X does not con-
form to the definition of the likelihood function in joint
estimation as samples cannot simultaneously appear in
two terms. Despite this theoretical gap, this method dem-
onstrates relatively high accuracy in simulation study.

2) Obtaining X' by sampling. We can generate X' by sam-
pling from a normal distribution. Assuming that X follows
a multivariate normal distribution, we calculate parame-
ters of X (mean and covariance matrix), and sample data
from the distribution to generate X'. Here, 1 is the num-
ber of samples chosen during the sampling process.

2.3 The unified model in joint estimation

Given expression data X and overall samples X', the parame-
ters to be estimated O and the likelihood function are

0= (ﬂla' c K MY - .7”K7MX7917' . '7QK7QX)
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Considering the sparsity and similarity of networks’ topol-
ogy, we propose the following fused penalty term with adap-
tive weights,
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Figure 1. The flowchart of the Adaptive Joint Graphical Model (AJGM). The model inputs include expression data and an overall sample derived from the
expression data, which can be generated using various methods. The parameter estimation process involves: (i) dynamically adjusting the similarity
relationships between networks during the joint estimation of GGMs, (i) identifying shared relationships between networks from the overall sample, and
(iii) implementing a data imputation process tailored for zero-inflated data. The model outputs include both the clustering results of the samples and the

inferred network structures.

(1 (k) ! (|9§/'k) B ng‘k < tre)
f6;7,- . 0;) =1 4 ; (6)

where 05;3) and GEI.X) denote the (i,7)-th elements of the preci-
sion matrix for subtype k and overall samples x’, respectively.

wgik‘kﬂ) and f(01(-]-1), .. .,Gf-f)) are adaptive weights. The entire
penalty term can be summarized into the following

two parts:

1) Fused penalty term: In the penalty term, 4; is a non-
negative tuning parameter that controls the sparsity of
the network (Yuan and Lin 2007). 1, is a non-negative
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tuning parameter that controls the similarity of subtype
networks. A3 is a tuning parameter greater than A,
adjusting the similarity between the overall network and
subtypes networks. It penalizes the differences between
Qg and Qx. With the inclusion of the second penalty
term, the similarity between Qg and Qx can be chained
through the two-by-two similarity between subtypes
(Seal et al. 2023). This approach ensures that subtype
gene networks are more likely to retain gene relation-
ships in overall network, consequently enhancing the ac-
curacy of detecting shared relationships.

Adaptive weights: The adaptive weights in AJGM con-

sist of two parts. First, wff‘b)

»

are the weights imposed on
penalizing the pairwise differences between precision
matrices. If |fo ) —Hff-b)| is large, suggesting that the rela-
tionship between gene i and gene j differs significantly
between the two networks, we apply a smaller weight to
the penalty term. Conversely, if \91(-;1) —6;@\ is small, we
apply a larger weight to the penalty term to encourage
similarity between networks. y is a non-negative tuning
parameter that adjusts the weight. Second, since the
model should place more emphasis on relationships
shared by all samples, we introduce f(eﬁj“, .., 0ii%)) to
regulate the alignment between the overall network and
the subtype networks. #re represents a non-negative
threshold that determines the similarity of values in the
precision matrices. When the following condition holds:
Vk e {1,2,... . K-1}, (|9§f> g+ 1) |<tre)

the differences between precision matrices are minimal.
In this case, as the relationship between gene i and gene j
is likely to be consistent across subtypes, we apply a
larger parameter 43 to this penalty term, promoting simi-
larity between the overall network and the subtype net-
works. Conversely, when this condition is not met, some
subtypes display gene relationships between i and j,
while others do not. Therefore, we decrease the align-
ment between the overall network and the subtype net-
works. The tuning parameter tre is used to measure the
similarity of values between precision matrices.

3 Materials and methods
3.1 Parameter estimation

The Expectation-Maximization (EM) algorithm (Dempster
et al. 1977) is employed to obtain the maximum penalized like-
lihood estimates, as shown in Algorithm 1. We introduce Zj, as
the indicator of whether sample ! belongs to subtype k. Since
Z, is treated as missing values (Gao et al. 2016), we define the
posterior probability Zy, as P(Zy, = 1]x;,®), which represents
the probability that sample / belongs to subtype k (Tan 2022).
The E-step involves updating Zj, and computing the condi-
tional expectation of the log-likelihood function with penalty:

n K
Eg (log L(© ZZ e Jog {meN (xluy, Q1) }
1 k=1
+ zm: log {N(x;\ﬂx,gx-l)}-P((a). (7)
t=1

Zy, is given as:

Yang et al.

-1
ﬂg(r 1) (xll,ur 1795:_1) )

20 _ .
-1
Sl UN(wluf =00 )

Ik

(8)

Here, r represents the iteration number in the EM algorithm.
In the M-step, maximization with respect to parameter j,
ux and 7, can be achieved by taking the derivative of the log-
likelihood in (7). The updating equations are obtained as

follows: ,u (r+1) =31.Z lk xl/Zl 1 II: > );H =2 Zt—] o
and 7, "D =157 Zlk . Q is updated using the Alternating
Direction Method of Multipliers (ADMM) algorithm (Boyd
et al. 2010), following an approach similar to the JGL estima-
tion (Danaher ef al. 2014) and its extensions (Lyu et al. 2018,
Ren et al. 2022, Seal et al. 2023). Compared to previous
methods, our penalty term includes adaptive weights and the
overall network, involving more complex network relation-
ships. The specific implementation of the ADMM algorithm
for AJGM and the complete process of EM algorithm is pro-
vided in Supplementary Section S1.

Algorithm 1 Algorithm for Parameter Estimation in AUJGM

* Input: Gene expression data X, overall samples X, number of
subtype K, tuning parameters 11,42,43, y and tre

* Initialization: Q¢ =Qx =1/, p, and =, are obtained from K-
means clustering

* Repeat the following steps in the EM algorithm:

1) Inthe E step, update Zk

2) Inthe M-step, update puy, p, and =g

3) In the M-step, update the precision matrices using

ADMM Algorithm

® Qutput: Overall network, subtype-specific networks, and

samples clustering results

3.2 Data imputation

Some gene sequencing data may deviate from a normal distri-
bution, violating the GGM assumptions. For instance,
scRNA-seq captures gene expression at a single-cell resolu-
tion, but its data is often highly sparse and prone to zero in-
flation, leading to deviations from a normal distribution.
Consequently, imputation methods are necessary to address
these deviations and ensure accurate modeling.

Following the CYBERTRACK model (Minoura et al.
2021), which performs data imputation within a mixture
Gaussian framework, we carry out data imputation at each
iteration of the EM algorithm. Assume that sample / belongs
to subtype k, then x/|C; ~ N(u;, Q7 '). After determining a
sample’s subtype and corresponding parameters (uy,Q; "),
zero values are imputed by sampling from the subtype’s
Gaussian distribution. The feasibility of data imputation,
along with the detailed process of the EM algorithm incorpo-
rating data imputation, is outlined in Supplementary
Section S2.

3.3 Tuning parameter selection

The tuning parameters in the model include the number of
subtypes K, the penalty parameters 41, 42, and 43, as well as
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the adaptive weights parameter y and threshold tre. In this
study, parameters can be selected using the Bayesian
Information Criterion (BIC), and an iterative network search
is recommended to optimize these values. Initially, we assign
starting values for parameters A1, 42, 13, 7, and tre, and use
the BIC criterion to determine the optimal K. Subsequently,
we update the parameters 11, A, 43, 7, and tre based on the
chosen K and recalculate K iteratively. Once K stabilizes, we
finalize the parameter set. Detailed instructions for calculat-
ing the BIC value and recommendations for parameter selec-
tion are provided in Supplementary Section S3.

4 Simulation study
4.1 Data generation

In the simulation study, we generate data from Gaussian dis-
tributions to validate the performance of AJGM. The ap-
proach for generating precision matrices for the simulated
data is based on a modular generation method (Wu and Luo
2022). The precision matrix Q,, is composed of multiple mod-
ules, each of size 10 x 10. Each module belongs to one of four
types (Fig. 2a): My (dense module), M, (circle module), M
(star module), and My (zero module, which does not exhibit
any genetic relationships).

We provide an example to demonstrate the generation pro-
cess of the precision matrix for p = 50 (Fig. 2b). Each block
in Q; has a 30% probability of being a public block, which is
consistent across all subtype precision matrices, representing
shared gene relationships. The module for the public block is
randomly selected from My, M., and M. Modules for the
non-public blocks are randomly selected from My, M., Mg,
and M. Details of the module values and the mean vector

(a) The network structure of modules in simulated data

generation process are provided in Supplementary Section S4.
In all simulations presented in this article, we generate
30 datasets with p =100 to assess network estimation
capability.

4.2 Subtype network inference

We select BLGGM (Wu and Luo 2022), GGMPF (Ren et al.
2022), MGGM (Tan 2022), SCGGM (Li and Li 2018), and
SILGGM (Zhang et al. 2018) as comparison methods. The
network inference performance is assessed based on False
Positive Rate (FPR), True Positive Rate (TPR) and F1 scores,
while the sample classification performance is evaluated us-
ing adjusted Rand index (ARI). Details regarding the compar-
ative methods and the calculation procedures for the
evaluation metrics are presented in Supplementary Sections
S5 and S6. Furthermore, in the simulation study, we set the
overall samples X' as X because this method exhibits rela-
tively high accuracy, as shown in Supplementary Table S2.
This difference arises because the sampling-based method
produces mimic data derived from X, which may lead to in-
formation loss and approximation errors. The network infer-
ence accuracy of generating X' by sampling is presented in
Supplementary Tables S2 and S3.

Data are initially generated with 7, =300 for K=3 and
K=4, and the corresponding results are displayed in
Table 1. For K = 3, regarding recall and F1, AJGM signifi-
cantly outperforms other methods. For K =4, recall and F1
scores of all methods show a decrease compared to the K=3
scenario. GGMPF and MGGM demonstrate sample misclas-
sification in certain datasets. AJGM shows superior perfor-
mance in terms of FPR, TPR, and F1 compared to
other methods.

(b) Example of a precision matrix
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Figure 2. The generation method of simulated data. (a) Network structure for three modules. (b) An example of a precision matrix generated

when p =50.

Table 1. Performance metrics of subtype networks.

K AJGM BLGGM GGMPF MGGM SCGGM SILGGM
FPR 3 0.01 (0.00) 0.01 (0.00) 0.03 (0.00) 0.04 (0.00) 0.02 (0.00) 0.01 (0.00)
4 0.01 (0.00) 0.01 (0.00) 0.09 (0.02) 0.02 (0.00) 0.03 (0.00) 0.01 (0.00)
TPR 3 0.90 (0.04) 0.65 (0.12) 0.74 (0.07) 0.76 (0.07) 0.77 (0.03) 0.83 (0.04)
4 0.82 (0.06) 0.53 (0.06) 0.51 (0.20) 0.74 (0.08) 0.72 (0.04) 0.75 (0.05)
F1 3 0.89 (0.03) 0.76 (0.10) 0.84 (0.04) 0.65 (0.07) 0.80 (0.03) 0.79 (0.02)
4 0.77 (0.05) 0.62 (0.05) 0.61(0.17) 0.66 (0.07) 0.75 (0.03) 0.76 (0.04)
ARI 3 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0 00) \
4 1.00 (0.00) 1.00 (0.00) 0.59 (0.10) 0.93 (0.14) 1.00 (0.00) \

The best results are indicated in bold.
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AIJGM BLGGM MGGM MGGM
(TPR=0.75 F1 =0.81)

(TPR=0.92 F1 = 0.87) (TPR=0.90 F1 = 0.84)

Figure 3. The estimated network for shared relationships of different methods and the true network in simulation study. Subfigure (a) represents the real
network, subfigures (b-e) represent the networks estimated by the corresponding methods, with the TPR and F1 scores provided below each subfigure.

4.3 Subtype network inference with zero-
inflated data

To simulate the high proportion of observed zeros in scRNA-
seq data, we generate zero-inflated data. Initially, the data
are generated with 7, = 300 and K = 3. Subsequently, a frac-
tion of values is set to zero based on a probability that
depends on the original value, as genes with lower expression
levels are more likely to go undetected.

We use two methods to introduce zero inflation. In the first
method, the probability that x;; is set to zero is given by:

.
pij=e 77,

where a is a tuning parameter that controls the proportion of
zeros in the dataset. In the second method, the probability
that x;; is set to zero is defined as:

pii = 1 - pxj,

where f is a tuning parameter that similarly regulates the pro-
portion of zeros.

Among the available methods, only AJGM, BLGGM,
SCGGM, and SILGGM are applicable to scRNA-seq data,
and these are selected for comparison. As the value of tuning
parameter increases, the proportion of zeros decreases, and
the estimation accuracy of all approaches improves. Across
various values of tuning parameters for two data generation
methods, AJGM consistently outperforms comparison meth-
ods in both recall and F1 metrics (Supplementary Table S1).

4.4 Overall network inference

AJGM identifies shared relationships through the overall net-
work and promotes their appearance in subtype networks dur-
ing joint estimation. The feasibility of this concept relies on the
accuracy of Qx in identifying shared relationships. In terms of
shared relationship identification, Qx shows high recall but rel-
atively low precision values (Supplementary Fig. S2). This
occurs primarily because certain gene relationships, present in
multiple but not all samples, are occasionally misidentified as
being shared across all subtypes in Qx. Overall, Qx performs
adequately in identifying shared relationships, as the overall
network only needs to increase the probability of potential
shared edges appearing in subtype networks, rather than di-
rectly estimating these edges. A more detailed discussion of the
overall network can be found in Supplementary Section S7.

4.5 Shared relationship inference

In AJGM, we incorporate the overall network to prioritize
shared edges, making them more likely to appear in subtype-

specific networks. By evaluating the performance of different
methods on simulated datasets, we demonstrate that intro-
ducing the overall network enhances the ability to estimate
shared edges, thereby improving the accuracy of network
inference. Metrics are computed separately for public and
non-public blocks in simulated data to evaluate AJGM’s ca-
pability in inferring shared relationships (Supplementary
Table S4). Compared to other competing approaches, AJGM
almost accurately estimates all shared relationships (Fig. 3).
In addition, we find that the public modules estimated by
AJGM exhibit higher accuracy compared to the non-public
modules, a trend not observed in the comparative methods.
We attribute this phenomenon to the introduction of an over-
all network Qx in joint estimation.

4.6 Computational performance

We also evaluate the runtime of AJGM on simulated datasets
with varying sample dimensions. For comparison, we include
the MGGM method, as both MGGM and AJGM leverage the
EM and ADMM algorithms for precision matrix estimation. As
illustrated in Supplementary Section S8, AJGM demonstrates a
significant computational speed advantage over MGGM across
various values of sample dimension, with the advantage becom-
ing increasingly pronounced as the number of genes grows.

5 Real application

We apply our method to the scRNA-seq data of triple-
negative breast cancer (TNBC). Among breast cancer sub-
types, TNBC exhibits the highest level of heterogeneity, char-
acterized by substantial variations in the biological
characteristics across different cell types. Consequently, in-
vestigating the cellular heterogeneity of TNBC is essential for
enhancing treatment outcomes and developing personalized
treatment strategies (Nikolski e al. 2024). In this section, we
will also demonstrate the construction of gene networks us-
ing bulk RNA-seq data to show that AJGM is applicable to
both single-cell and bulk data.

Scholars have proposed various subtyping methods to ad-
dress the heterogeneity of TNBC, yet these methods are inade-
quately integrated and lack a comprehensive approach.
Additionally, the relationship between TNBC subtypes and
gene networks is not well understood. The heterogeneity of
TNBC is reflected in the distinct gene networks of its subtypes,
yet most models do not adequately account for this aspect dur-
ing classification. Using AJGM, we can achieve simultaneous
sample classification and network inference in TNBC cells with
unknown heterogeneity, allowing for the investigation of both
shared and subtype-specific gene relationships.
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Figure 4. (a) The BIC plot for selecting K. (b) The log-expression heatmap for scRNA-seq after cell classification, where darker shades indicate lower

expression values and lighter shades indicate higher values.

5.1 Data

The data utilized in this study are obtained from single-cell
RNA sequencing data of 220 TNBC cells (Chung ez al.
2017), accessible from the GEO database (ID: GSE75688).
We select genes highly correlated with the disease, guided by
the PAMS0 gene set (Parker et al. 2009). Additionally, we
reference other research studies (Lyu et al. 2018, Tang et al.
2018) and incorporate hub genes from known breast cancer
gene networks into the analysis. These hub genes are merged
with the PAMS0 gene set, resulting in a final selection of 79
genes for subsequent investigation. The list of these genes can
be found in Supplementary Section S10.

Given the presence of outliers significantly higher than the
mean value in the dataset, we apply a logarithmic transforma-
tion to satisfy the assumption of multivariate normality. The
pBIC plot indicates the presence of three subtypes (Fig. 4a).

5.2 Results of cell classification and
network inference

The 220 cell samples are divided into three categories, con-
taining 91, 44, and 85 samples, respectively. Subtype 1 exhib-
its a higher proportion of zero values, while Subtype 2 overall
has higher gene expression values (Fig. 4b). In gene networks,
we focus on the shared and specific relationships among sub-
types. There are 66 relationships shared among the three sub-
type networks. The first subtype exhibits 50, the second
subtype exhibits 119, and the third subtype exhibits 78
subtype-specific relationships. The complete gene network
and cell classification results are demonstrated in
Supplementary Tables S5 and S6, Figs S5-S8, and S12.

5.3 Biological significance

We first focus on the shared gene relationships (Fig. 5a).
These relationships are present in all subtypes of TNBC, rep-
resenting common biological features. Notably, FOXA1
exhibits the highest gene degree and is implicated in the posi-
tive regulation of the cell cycle pathway (Table 2). Previous
studies have suggested that reduced FOXA1 expression may
result in malignancy and enhanced cancer stemness, poten-
tially due to disruptions in cell cycle regulation. Moreover,
FOXAT1 serves as a subtype marker for the identification of
TNBC (Dai et al. 2019). FGFR4 also exhibits one of the high-
est degrees. Elevated FGFR4 expression in TNBC is linked to

poorer prognostic outcomes, such as reduced survival times,
suboptimal chemotherapy responses, and increased lymph
node metastasis (Wei et al. 2020).

We next focus on gene relationships specific to particular
subtypes (Fig. 5b). These relationships provide insights into
the cellular heterogeneity of TNBC. Subtype 2, among the
three subtypes identified by AJGM, has the smallest sample
size but the greatest number of gene interrelationships. Dense
genetic networks may suggest enhanced or aberrant activation
of specific signaling pathways. For instance, tumor growth and
metastasis are accelerated by the activation of signaling path-
ways involved in cell proliferation, invasion, and metastasis.
Consequently, subtype 2 is likely the most invasive subtype.
Enrichment analysis reveals that a greater number of genes in
subtype 2 are associated with pathways involved in cancer cell
metastasis and invasion compared to the other subtypes.

The hub genes of the three subtype-specific networks also
differ. The hub gene of the first subtype is CDC20. Aberrant
expression of CDC20 is associated with premature anaphase
promotion, resulting in mitotic abnormalities that may con-
tribute to tumorigenesis. The hub gene of the second subtype
is MAP3K1, a key regulator of signaling cascades that control
tumor proliferation and metastasis (Sun et al. 2015).
MAP3K1, a member of the MAPK family, participates in
multiple MAPK signaling pathways, as indicated by enrich-
ment analysis, and regulates essential cellular processes re-
lated to growth and survival (Kuo et al. 2023). The hub gene
of the third subtype is MYC. Dysregulation of MYC pro-
motes the accelerated development and metastasis of hetero-
geneous triple-negative breast tumors, contributing to the
emergence of more aggressive subtypes.

Additionally, we utilize two comparative methods, JGL
(Danaher et al. 2014) and WGCNA (Langfelder and Horvath
2008), for gene network construction. Enrichment analysis
reveals that AJGM, with its superior network estimation ac-
curacy, offers more biologically relevant insights. For exam-
ple, AJGM identifies pathways promoting cell cycle
activation and proliferation, such as Cell Cycle Checkpoint
Signaling and Regulation of Mitotic Metaphase/Anaphase
Transition. In contrast, JGL and WGCNA highlight path-
ways like Negative Regulation of Cell Cycle and Negative
Regulation of Cell Cycle Process, which are less aligned with
the aggressive traits of TNBC. By prioritizing shared relation-
ships between subtypes, AJGM effectively captures both
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Table 2. Hub genes and Go term enrichment.
Network name Hubs Go term enrichment FDR
Overall network FOXA1, FGFR4 Mitotic cell cycle phase transition 1.40E-20
Positive regulation of cell cycle 1.84E-11
Positive regulation of kinase activity 3.65E-05
Subtypel-specific network CDC20 Cell cycle checkpoint signaling 4.70E-16
Subtype2-specific network MAP3K1 Regulation of stress-activated MAPK cascade 8.10E-05
Subtype3-specific network MYC Signal transduction by p53 class mediator 4.37E-10

shared and distinct features of subtypes, enabling more in-
sightful downstream biological analyses. More detailed infor-
mation on the downstream biological analysis of TNBC can
be found in Supplementary Section S11.

5.4 Application on bulk RNA-seq data of TNBC

Models similar to AJGM, capable of simultaneously perform-
ing sample clustering and inferring networks, are particularly
suited to scRNA-seq data. This capability arises from the
model’s ability to utilize single-cell resolution data for precise
cell classification. In contrast, bulk RNA-seq represents the
average of cell populations, making it impossible to classify
subtypes at the single-cell level. However, AJGM can still be
applied to bulk RNA-seq data to construct gene networks for
different subtypes.

We obtain bulk RNA-seq data for 108 TNBC samples
from the TCGA project (The Cancer Genome Atlas Network
2012) and select 79 genes consistent with those studied in the
scRNA-seq analysis. AJGM classify the 108 samples into
three groups, containing 22, 17, and 69 samples, respectively.
In the gene networks, 152 edges are shared among all sub-
types. Each subtype has 164, 36, and 91 unique edges, re-
spectively. In the network of shared relationships, genes like
FOXA1 and FOXC1 exhibit high degrees, similar to those in
the network previously constructed using scRNA-seq data.
Detailed network information is provided in Supplementary
Tables S7 and S8 and Figs S9-512, and S14.

5.5 Application on time-series sequencing data

We also apply AJGM to time series sequencing data to ex-
plore the scalability of our proposed model. The first dataset
is scRNA-seq data from Arabidopsis root procambium-type
cells (Shahan et al. 2022), where all cells are annotated into
10 distinct time points (TO-T10) through related models and
manual verification. Based on AJGM, we reclassify the sam-
ples into three stages: early, middle, and late stages.
Moreover, since cells from time points that are close to each
other tend to share more common pathways, we extend
AJGM by dynamically adjusting the penalty term in the net-
work order based on the prior time labels in the dataset, en-
suring that the network is arranged in chronological order.
The clustering results of the cells show high consistency with
the dataset’s prior time labels, demonstrating the reliable sub-
classification capability of AJGM. Additionally, we identify
hub genes in the network corresponding to the respective
time periods, with early-stage hub genes being more related
to growth and development, while those in the middle and
late stages are more associated with differentiation. The de-
tailed analysis is provided in Supplementary Section S12.

The second dataset is single-cell RNA sequencing data of
mouse embryonic stem cells (Klein et al. 2015), used to study
the differentiation process regulated by leukemia inhibitory

factor (LIF). The dataset is collected at four time points, and
we select data from Day O (stage 1) and Day 7 (stage 2) to ex-
plore hub genes affecting stem cell growth. By examining the
network of shared relationships, we can observe which regu-
latory relationships change across all cells in heterogeneous
cell samples at different time points. The results indicate that
LIF regulates stem cell pluripotency and inhibits differentia-
tion, as shown by the reduced degree of genes related to dif-
ferentiation, such as LEFTY2, CDX2, and COL1A1, at Day
7. Detailed information about this real application can be
found in Supplementary Section S13.

6 Discussion

We present a method named AJGM for estimating gene net-
works from data exhibiting unknown heterogeneity.
zCompared to existing methods, AJGM offers several advan-
tages. Firstly, an overall network is introduced in joint estima-
tion, with relationships shared by all samples being accurately
captured, thus enhancing the entire estimation accuracy of the
network. Secondly, it utilizes adaptive weights to automatically
adjust similarity in network structures across networks,
addressing theoretical limitations of existing methods as rela-
tionships between different gene pairs may vary across sub-
types. Moreover, AJGM can handle zero-inflated scRNA-seq
data through data imputation, further extending the applicabil-
ity of GGMs. Our AJGM consistently outperforms existing
methods in network inference and sample classification on syn-
thetic datasets, across datasets with varying numbers of sub-
types and datasets exhibiting zero-inflation.

There are several directions to improve the current work.
Although the reliability of data imputation method in AJGM
has been demonstrated, applying this method to single-cell
data can be challenging when a high proportion of zeros is
present. This challenge arises because, during each iteration
of the EM algorithm, even after parameter convergence,
replacing zeros with sampled values can modify the dataset,
requiring re-estimation of the parameters. To address this is-
sue, employing a sampling method with robust convergence
properties, such as Gibbs sampling, may prove effective.

In addition, the method for estimating the overall network
can be improved. Theoretically, the overall network should
only contain gene relationships present in all samples.
However, it may also include relationships that are found in
the majority of samples but are not necessarily present in all
subtypes. One approach to addressing this issue can be sepa-
rately estimate common and non-common parts of subtype
networks (Wu et al. 2020). This method can yield an overall
network that is more valuable in practical applications.

An important direction for future research involves en-
hancing AJGM to support higher-dimensional network esti-
mation. For instance, we are exploring its application to
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spatial transcriptomics data, enabling the joint estimation of
gene networks across spatially adjacent cell subtypes.
Furthermore, we aim to extend AJGM to temporal sequenc-
ing datasets to capture dynamic regulatory relationships over
time. A more ambitious endeavor would be the integration of
spatial and temporal dimensions into a unified three-
dimensional framework. These developments highlight the
remarkable scalability and adaptability of AJGM for analyz-
ing increasingly complex biological data.
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