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Abstract
Motivation: Inferring gene networks provides insights into biological pathways and functional relationships among genes. When gene expres
sion samples exhibit heterogeneity, they may originate from unknown subtypes, prompting the utilization of mixture Gaussian graphical model 
(GGM) for simultaneous subclassification and gene network inference. However, this method overlooks the heterogeneity of network relation
ships across subtypes and does not sufficiently emphasize shared relationships. Additionally, GGM assumes data follows a multivariate 
Gaussian distribution, which is often not the case with zero-inflated scRNA-seq data.
Results: We propose an Adaptive Joint Graphical Model (AJGM) for estimating multiple gene networks from single-cell or bulk data with 
unknown heterogeneity. In AJGM, an overall network is introduced to capture relationships shared by all samples. The model establishes 
connections between the subtype networks and the overall network through adaptive weights, enabling it to focus more effectively on gene 
relationships shared across all networks, thereby enhancing the accuracy of network estimation. On synthetic data, the proposed approach out
performs existing methods in terms of sample classification and network inference, particularly excelling in the identification of shared relation
ships. Applying this method to gene expression data from triple-negative breast cancer confirms known gene pathways and hub genes, while 
also revealing novel biological insights.
Availability and implementation: The Python code and demonstrations of the proposed approaches are available at https://github.com/yyy 
tim/AJGM, and the software is archived in Zenodo with DOI: 10.5281/zenodo.14740972.

1 Introduction
Gene networks play a crucial role in understanding func
tional relationships and biological patterns among genes 
(Saha et al. 2017). Several statistical models have been pro
posed to infer gene networks from gene expression data, 
based on methods such as correlation (Tan et al. 2022), mu
tual information (Zhao et al. 2016), regression (Duren et al. 
2017), and probabilistic graphical models (Wu et al., 2017). 
Among these, Gaussian graphical models (GGMs) are widely 
favored for their ability to capture conditional dependencies 
between variables. This feature allows them to more accu
rately reflect real-world interactions. GGM assumes that 
gene expression data follow a multivariate Gaussian distribu
tion, and significant conditional dependencies among genes 
are identified by estimating the inverse of the covariance ma
trix, also called the precision matrix. The non-zero off-diago
nal elements of the precision matrix represent edges in 
the network.

In multi-condition gene expression studies, co-expression 
profiles across conditions are often related, making it essen
tial to investigate both similarities and differences in gene net
works across conditions (El-Kebir et al. 2015, Ficklin et al. 
2017). Both shared and condition-specific relationships carry 
significant biological implications for understanding the het
erogeneity and commonality within these networks. In this 

context, one method for identifying shared patterns involves 
constructing a regularization function that encourages simi
larities between graphs, a technique known as joint estima
tion. It has been shown that joint estimation can avoid 
suboptimal solutions and detect edges that may be missed in 
independent estimation (Lee and Liu, 2015). Among fre
quentist methods, the joint graphical lasso (JGL) (Danaher 
et al. 2014) is the most prominent approach for achieving 
this. JGL utilizes two distinct forms of convex penalty func
tions: one promotes structural similarity by enforcing similar
ity in precision matrices, while the other encourages shared 
sparse structures across subnetworks using a group lasso pen
alty. In the Bayesian paradigm, inference methods for GGMs 
that utilize different prior distributions have proven effective 
for high-dimensional sparse data (Williams 2021).

In certain cases, prior knowledge about the class member
ship is unavailable, preventing the direct application of the 
aforementioned methods for network inference. For instance, 
scRNA-seq technology can detect random gene expression 
variability within a single population (Papalexi and Satija, 
2018), but the precise number and classification of subpopu
lations often remain undetermined. When heterogeneity is 
unknown, certain methods integrate graphical models with 
mixture distributions to accomplish concurrent clustering 
and network estimation (Gao et al. 2016). Compared to 
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methods that first perform sample clustering followed by 
joint estimation, these approaches allow for mutual adjust
ment between clustering and network inference (Tan 2022), 
resulting in more coherent and accurate identification of sub
types and their interactions.

The essence of joint estimation lies in measuring relation
ships between networks by examining partially shared edge 
structures. However, existing methods present several limita
tions in assessing these relationships. First, these methods in
herently assume equal similarity among networks across 
subtypes, an assumption that is problematic due to the het
erogeneity in genes and subtypes. To address this issue, the 
Condition-adaptive Fused Graphical Lasso (CFGL) (Lyu 
et al. 2018) is proposed, which allows for adaptive adjust
ment of similarity in gene relationships. However, CFGL 
adjusts similarity weights using binary variables, which fails 
to capture the precise degree of similarity between networks. 
Second, shared relationships across subtypes are derived by 
promoting similarity between precision matrices during joint 
estimation and then extracting relationships common to all 
networks. This method derives shared relationships through 
pairwise network connections but lacks sufficient consider
ation of the overall sample context.

Considering the limitations of existing models, we propose 
a new method named Adaptive Joint Graphical Model 
(AJGM) for jointly estimating multiple gene networks, with 
its flowchart shown in Fig. 1. AJGM can simultaneously clas
sify samples and infer networks, while adaptively adjusting 
the similarity between network structures. By incorporating 
the overall network in the joint estimation, the model’s ability 
to identify shared relationships is significantly improved, thus 
enhancing the estimation accuracy of gene networks. 
Furthermore, to address the challenge posed by a large num
ber of zeros in single-cell data, we develop a data imputation 
method that extends the GGM’s applicability to both 
scRNA-seq data and bulk RNA-seq data. The gene networks 
estimated by AJGM outperform comparative methods on 
simulated data and yield biologically meaningful results in 
gene expression data of triple-negative breast cancer.

2 Models
2.1 Modeling subtype gene networks
Suppose that there are n samples, each with p genes in expres
sion data X. Considering the heterogeneity, we assume the n 
samples belong to K subtypes. Therefore, the samples x0l; l ¼
1; . . . ;n come from a Gaussian mixture distribution with the 
probability density function: 

p xlð Þ ¼
XK

k¼1
πkN xljμk;Ωk

− 1
� �

; (1) 

where N denotes the multivariate normal density, l is the 
sample index, πk is the proportion of subtype k with PK

k¼1 πk ¼ 1, μk denotes the mean, and Ωk represents the pre
cision matrix of k. The non-zero elements in Ωk represent the 
connected edges in the gene network of subtype k.

2.2 Modeling the overall gene network
To improve the model’s ability to recognize shared relation
ships, we introduce an overall gene network in joint learning. 
The overall network can identify shared relationships and 
make these edges more likely to appear in all subtype net
works during joint estimation.

When modeling the overall gene network, we no longer 
consider the samples to belong to different subtypes. We set 
X 0 as overall samples of the original data X for learning the 
overall gene network and x0t; t ¼ 1; . . . ;m is assumed to follow 
a normal distribution: 

p x0t
� �

¼ N x0tjμX;ΩX
− 1

� �

: (2) 

The overall network ΩX captures shared relationships by 
using maximum likelihood estimation, which emphasizes pat
terns and connections that are consistent across the majority 
of samples. In addition, the overall network serves to identify 
potential shared relationships and facilitates their presence in 
subtype-specific networks. The final estimated network of 
shared relationships is obtained by taking the union of all 
subtype-specific networks.

There are multiple methods to obtain X 0. When specific 
overall samples are available, they can be directly utilized. In 
cases where such information is lacking, we recommend us
ing the following two methods to obtain X 0:

1) Setting X 0 as X. A straightforward idea is to designate all 
samples in X 0 as X, since this approach can capture the 
complete information for learning shared relationships. 
In this case, m, representing the number of overall sam
ples, is equal to n. However, setting X 0 as X does not con
form to the definition of the likelihood function in joint 
estimation as samples cannot simultaneously appear in 
two terms. Despite this theoretical gap, this method dem
onstrates relatively high accuracy in simulation study. 

2) Obtaining X 0 by sampling. We can generate X 0 by sam
pling from a normal distribution. Assuming that X follows 
a multivariate normal distribution, we calculate parame
ters of X (mean and covariance matrix), and sample data 
from the distribution to generate X 0. Here, m is the num
ber of samples chosen during the sampling process. 

2.3 The unified model in joint estimation
Given expression data X and overall samples X 0, the parame
ters to be estimated Q and the likelihood function are 

Q ¼ π1; . . .; πK; μ1; . . .; μK; μX;Ω1; . . .;ΩK;ΩXð Þ

log LðQÞ ¼
Xn

l¼1

log
XK

k¼1

πkNðxljμk;Ωk
− 1Þ

8
<

:

9
=

;

þ
Xm

t¼1

log Nðx0tjμX;ΩX
− 1Þ

n o

− PðQ
�

: (3) 

Considering the sparsity and similarity of networks’ topol
ogy, we propose the following fused penalty term with adap
tive weights, 

PðQÞ ¼ λ1
P

i6¼j

XK

k¼1

jθðkÞij j þ
X

i6¼j

jθðXÞij j

0

@

1

A

þ λ2
P

i6¼j

XK − 1

k¼1

wðk;kþ 1Þ
ij jθðkÞij − θðkþ 1Þ

ij j

þ λ3
P

i6¼j f ðθð1Þij ; . . . :; θðkÞij Þw
ðK;XÞ
ij

�
�
�θðKÞij − θðXÞij

�
�
�

; (4) 

wða;bÞij ¼ 1=jθðaÞij − θðbÞij j
γ
; (5) 
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f ðθð1Þij ; . . . :; θðkÞij Þ ¼

1 jθðkÞij − θðkþ 1Þ
ij j< tre

� �

λ2

λ3
else

;

8
>><

>>:

(6) 

where θðkÞij and θðXÞij denote the ði; jÞ-th elements of the preci
sion matrix for subtype k and overall samples x0, respectively. 

wðk;kþ1Þ
ij and f ðθð1Þij ; . . . :;θðkÞij Þ are adaptive weights. The entire 

penalty term can be summarized into the following 
two parts:

1) Fused penalty term: In the penalty term, λ1 is a non- 
negative tuning parameter that controls the sparsity of 
the network (Yuan and Lin 2007). λ2 is a non-negative 

Figure 1. The flowchart of the Adaptive Joint Graphical Model (AJGM). The model inputs include expression data and an overall sample derived from the 
expression data, which can be generated using various methods. The parameter estimation process involves: (i) dynamically adjusting the similarity 
relationships between networks during the joint estimation of GGMs, (ii) identifying shared relationships between networks from the overall sample, and 
(iii) implementing a data imputation process tailored for zero-inflated data. The model outputs include both the clustering results of the samples and the 
inferred network structures.
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tuning parameter that controls the similarity of subtype 
networks. λ3 is a tuning parameter greater than λ2, 
adjusting the similarity between the overall network and 
subtypes networks. It penalizes the differences between 
ΩK and ΩX. With the inclusion of the second penalty 
term, the similarity between ΩK and ΩX can be chained 
through the two-by-two similarity between subtypes 
(Seal et al. 2023). This approach ensures that subtype 
gene networks are more likely to retain gene relation
ships in overall network, consequently enhancing the ac
curacy of detecting shared relationships. 

2) Adaptive weights: The adaptive weights in AJGM con
sist of two parts. First, wða;bÞij are the weights imposed on 
penalizing the pairwise differences between precision 
matrices. If jθðaÞij − θðbÞij j is large, suggesting that the rela
tionship between gene i and gene j differs significantly 
between the two networks, we apply a smaller weight to 
the penalty term. Conversely, if jθðaÞij − θðbÞij j is small, we 
apply a larger weight to the penalty term to encourage 
similarity between networks. γ is a non-negative tuning 
parameter that adjusts the weight. Second, since the 
model should place more emphasis on relationships 
shared by all samples, we introduce f ðθð1Þij ; . . . :;θijðkÞÞ to 
regulate the alignment between the overall network and 
the subtype networks. tre represents a non-negative 
threshold that determines the similarity of values in the 
precision matrices. When the following condition holds: 

8k 2 1;2; . . . :;K − 1f g; jθðkÞij − θðkþ1Þ
ij j< tre

� �

the differences between precision matrices are minimal. 
In this case, as the relationship between gene i and gene j 
is likely to be consistent across subtypes, we apply a 
larger parameter λ3 to this penalty term, promoting simi
larity between the overall network and the subtype net
works. Conversely, when this condition is not met, some 
subtypes display gene relationships between i and j, 
while others do not. Therefore, we decrease the align
ment between the overall network and the subtype net
works. The tuning parameter tre is used to measure the 
similarity of values between precision matrices. 

3 Materials and methods
3.1 Parameter estimation
The Expectation-Maximization (EM) algorithm (Dempster 
et al. 1977) is employed to obtain the maximum penalized like
lihood estimates, as shown in Algorithm 1. We introduce Zlk as 
the indicator of whether sample l belongs to subtype k. Since 
Zlk is treated as missing values (Gao et al. 2016), we define the 
posterior probability Ẑlk as P Zlk ¼ 1jxl;Qð Þ, which represents 
the probability that sample l belongs to subtype k (Tan 2022). 
The E-step involves updating Ẑlk and computing the condi
tional expectation of the log-likelihood function with penalty: 

E
Q̂

log L Qð Þ
� �

¼
Xn

l¼1

XK

k¼1

Ẑlk log πkN xljμk;Ωk
− 1

� �� �
:

þ
Xm

t¼1

log N x0tjμX;ΩX
− 1

� �n o

− P Qð Þ: (7) 

Ẑlk is given as: 

Ẑ rð Þ
lk ¼

π r − 1ð Þ

k N xljμ r − 1ð Þ

k ;Ω r − 1ð Þ
− 1

k

� �

P
kπ r − 1ð Þ

k N xljμ r − 1ð Þ

k ;Ω r − 1ð Þ
− 1

k

� � : (8) 

Here, r represents the iteration number in the EM algorithm.
In the M-step, maximization with respect to parameter μk, 

μX and πk can be achieved by taking the derivative of the log- 
likelihood in (7). The updating equations are obtained as 
follows: μ̂ðrþ1Þ

k ¼
Pn

l¼1 ẐðrÞlk xl=
Pn

l¼1 ẐðrÞlk , μ̂ðrþ1Þ
X ¼ 1

m

Pm
t¼1 x0t, 

and πk
ðrþ1Þ ¼ 1

n

Pn
l¼1 ẐðrÞlk . Ω is updated using the Alternating 

Direction Method of Multipliers (ADMM) algorithm (Boyd 
et al. 2010), following an approach similar to the JGL estima
tion (Danaher et al. 2014) and its extensions (Lyu et al. 2018, 
Ren et al. 2022, Seal et al. 2023). Compared to previous 
methods, our penalty term includes adaptive weights and the 
overall network, involving more complex network relation
ships. The specific implementation of the ADMM algorithm 
for AJGM and the complete process of EM algorithm is pro
vided in Supplementary Section S1.

3.2 Data imputation
Some gene sequencing data may deviate from a normal distri
bution, violating the GGM assumptions. For instance, 
scRNA-seq captures gene expression at a single-cell resolu
tion, but its data is often highly sparse and prone to zero in
flation, leading to deviations from a normal distribution. 
Consequently, imputation methods are necessary to address 
these deviations and ensure accurate modeling.

Following the CYBERTRACK model (Minoura et al. 
2021), which performs data imputation within a mixture 
Gaussian framework, we carry out data imputation at each 
iteration of the EM algorithm. Assume that sample l belongs 
to subtype k, then xljCl �Nðμk;Ω− 1

k Þ. After determining a 
sample’s subtype and corresponding parameters ðμk;Ω− 1

k Þ, 
zero values are imputed by sampling from the subtype’s 
Gaussian distribution. The feasibility of data imputation, 
along with the detailed process of the EM algorithm incorpo
rating data imputation, is outlined in Supplementary 
Section S2.

3.3 Tuning parameter selection
The tuning parameters in the model include the number of 
subtypes K, the penalty parameters λ1, λ2, and λ3, as well as 

Algorithm 1 Algorithm for Parameter Estimation in AJGM

� Input: Gene expression data X, overall samples X 0, number of 
subtype K , tuning parameters λ1;λ2;λ3, γ and tre 

� Initialization: Ωk ¼ΩX ¼ I; μk and πk are obtained from K- 
means clustering 

� Repeat the following steps in the EM algorithm: 
1) In the E step, update Ẑ lk 

2) In the M-step, update μX ; μk and πk 

3) In the M-step, update the precision matrices using 
ADMM Algorithm 

� Output: Overall network, subtype-specific networks, and 
samples clustering results 
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the adaptive weights parameter γ and threshold tre. In this 
study, parameters can be selected using the Bayesian 
Information Criterion (BIC), and an iterative network search 
is recommended to optimize these values. Initially, we assign 
starting values for parameters λ1, λ2, λ3, γ, and tre, and use 
the BIC criterion to determine the optimal K. Subsequently, 
we update the parameters λ1, λ2, λ3, γ, and tre based on the 
chosen K and recalculate K iteratively. Once K stabilizes, we 
finalize the parameter set. Detailed instructions for calculat
ing the BIC value and recommendations for parameter selec
tion are provided in Supplementary Section S3.

4 Simulation study
4.1 Data generation
In the simulation study, we generate data from Gaussian dis
tributions to validate the performance of AJGM. The ap
proach for generating precision matrices for the simulated 
data is based on a modular generation method (Wu and Luo 
2022). The precision matrix Ωk is composed of multiple mod
ules, each of size 10 × 10. Each module belongs to one of four 
types (Fig. 2a): Md (dense module), Mc (circle module), Ms 

(star module), and M0 (zero module, which does not exhibit 
any genetic relationships).

We provide an example to demonstrate the generation pro
cess of the precision matrix for p¼ 50 (Fig. 2b). Each block 
in Ωk has a 30% probability of being a public block, which is 
consistent across all subtype precision matrices, representing 
shared gene relationships. The module for the public block is 
randomly selected from Md, Mc, and Ms. Modules for the 
non-public blocks are randomly selected from Md, Mc, Ms, 
and M0. Details of the module values and the mean vector 

generation process are provided in Supplementary Section S4. 
In all simulations presented in this article, we generate 
30 datasets with p¼ 100 to assess network estimation 
capability.

4.2 Subtype network inference
We select BLGGM (Wu and Luo 2022), GGMPF (Ren et al. 
2022), MGGM (Tan 2022), SCGGM (Li and Li 2018), and 
SILGGM (Zhang et al. 2018) as comparison methods. The 
network inference performance is assessed based on False 
Positive Rate (FPR), True Positive Rate (TPR) and F1 scores, 
while the sample classification performance is evaluated us
ing adjusted Rand index (ARI). Details regarding the compar
ative methods and the calculation procedures for the 
evaluation metrics are presented in Supplementary Sections 
S5 and S6. Furthermore, in the simulation study, we set the 
overall samples X 0 as X because this method exhibits rela
tively high accuracy, as shown in Supplementary Table S2. 
This difference arises because the sampling-based method 
produces mimic data derived from X, which may lead to in
formation loss and approximation errors. The network infer
ence accuracy of generating X 0 by sampling is presented in 
Supplementary Tables S2 and S3.

Data are initially generated with nk ¼ 300 for K¼ 3 and 
K¼ 4, and the corresponding results are displayed in  
Table 1. For K¼ 3, regarding recall and F1, AJGM signifi
cantly outperforms other methods. For K¼ 4, recall and F1 
scores of all methods show a decrease compared to the K¼ 3 
scenario. GGMPF and MGGM demonstrate sample misclas
sification in certain datasets. AJGM shows superior perfor
mance in terms of FPR, TPR, and F1 compared to 
other methods.

Figure 2. The generation method of simulated data. (a) Network structure for three modules. (b) An example of a precision matrix generated 
when p ¼ 50.

Table 1. Performance metrics of subtype networks.

K AJGM BLGGM GGMPF MGGM SCGGM SILGGM

FPR 3 0.01 (0.00) 0.01 (0.00) 0.03 (0.00) 0.04 (0.00) 0.02 (0.00) 0.01 (0.00)
4 0.01 (0.00) 0.01 (0.00) 0.09 (0.02) 0.02 (0.00) 0.03 (0.00) 0.01 (0.00)

TPR 3 0.90 (0.04) 0.65 (0.12) 0.74 (0.07) 0.76 (0.07) 0.77 (0.03) 0.83 (0.04)
4 0.82 (0.06) 0.53 (0.06) 0.51 (0.20) 0.74 (0.08) 0.72 (0.04) 0.75 (0.05)

F1 3 0.89 (0.03) 0.76 (0.10) 0.84 (0.04) 0.65 (0.07) 0.80 (0.03) 0.79 (0.02)
4 0.77 (0.05) 0.62 (0.05) 0.61 (0.17) 0.66 (0.07) 0.75 (0.03) 0.76 (0.04)

ARI 3 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) \
4 1.00 (0.00) 1.00 (0.00) 0.59 (0.10) 0.93 (0.14) 1.00 (0.00) \

The best results are indicated in bold.
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4.3 Subtype network inference with zero- 
inflated data
To simulate the high proportion of observed zeros in scRNA- 
seq data, we generate zero-inflated data. Initially, the data 
are generated with nk ¼ 300 and K¼ 3. Subsequently, a frac
tion of values is set to zero based on a probability that 
depends on the original value, as genes with lower expression 
levels are more likely to go undetected.

We use two methods to introduce zero inflation. In the first 
method, the probability that xij is set to zero is given by: 

pij ¼ e − αxij ;

where α is a tuning parameter that controls the proportion of 
zeros in the dataset. In the second method, the probability 
that xij is set to zero is defined as: 

pij ¼ 1 − βxij;

where β is a tuning parameter that similarly regulates the pro
portion of zeros.

Among the available methods, only AJGM, BLGGM, 
SCGGM, and SILGGM are applicable to scRNA-seq data, 
and these are selected for comparison. As the value of tuning 
parameter increases, the proportion of zeros decreases, and 
the estimation accuracy of all approaches improves. Across 
various values of tuning parameters for two data generation 
methods, AJGM consistently outperforms comparison meth
ods in both recall and F1 metrics (Supplementary Table S1).

4.4 Overall network inference
AJGM identifies shared relationships through the overall net
work and promotes their appearance in subtype networks dur
ing joint estimation. The feasibility of this concept relies on the 
accuracy of ΩX in identifying shared relationships. In terms of 
shared relationship identification, ΩX shows high recall but rel
atively low precision values (Supplementary Fig. S2). This 
occurs primarily because certain gene relationships, present in 
multiple but not all samples, are occasionally misidentified as 
being shared across all subtypes in ΩX. Overall, ΩX performs 
adequately in identifying shared relationships, as the overall 
network only needs to increase the probability of potential 
shared edges appearing in subtype networks, rather than di
rectly estimating these edges. A more detailed discussion of the 
overall network can be found in Supplementary Section S7.

4.5 Shared relationship inference
In AJGM, we incorporate the overall network to prioritize 
shared edges, making them more likely to appear in subtype- 

specific networks. By evaluating the performance of different 
methods on simulated datasets, we demonstrate that intro
ducing the overall network enhances the ability to estimate 
shared edges, thereby improving the accuracy of network 
inference. Metrics are computed separately for public and 
non-public blocks in simulated data to evaluate AJGM’s ca
pability in inferring shared relationships (Supplementary 
Table S4). Compared to other competing approaches, AJGM 
almost accurately estimates all shared relationships (Fig. 3). 
In addition, we find that the public modules estimated by 
AJGM exhibit higher accuracy compared to the non-public 
modules, a trend not observed in the comparative methods. 
We attribute this phenomenon to the introduction of an over
all network ΩX in joint estimation.

4.6 Computational performance
We also evaluate the runtime of AJGM on simulated datasets 
with varying sample dimensions. For comparison, we include 
the MGGM method, as both MGGM and AJGM leverage the 
EM and ADMM algorithms for precision matrix estimation. As 
illustrated in Supplementary Section S8, AJGM demonstrates a 
significant computational speed advantage over MGGM across 
various values of sample dimension, with the advantage becom
ing increasingly pronounced as the number of genes grows.

5 Real application
We apply our method to the scRNA-seq data of triple- 
negative breast cancer (TNBC). Among breast cancer sub
types, TNBC exhibits the highest level of heterogeneity, char
acterized by substantial variations in the biological 
characteristics across different cell types. Consequently, in
vestigating the cellular heterogeneity of TNBC is essential for 
enhancing treatment outcomes and developing personalized 
treatment strategies (Nikolski et al. 2024). In this section, we 
will also demonstrate the construction of gene networks us
ing bulk RNA-seq data to show that AJGM is applicable to 
both single-cell and bulk data.

Scholars have proposed various subtyping methods to ad
dress the heterogeneity of TNBC, yet these methods are inade
quately integrated and lack a comprehensive approach. 
Additionally, the relationship between TNBC subtypes and 
gene networks is not well understood. The heterogeneity of 
TNBC is reflected in the distinct gene networks of its subtypes, 
yet most models do not adequately account for this aspect dur
ing classification. Using AJGM, we can achieve simultaneous 
sample classification and network inference in TNBC cells with 
unknown heterogeneity, allowing for the investigation of both 
shared and subtype-specific gene relationships.

Figure 3. The estimated network for shared relationships of different methods and the true network in simulation study. Subfigure (a) represents the real 
network, subfigures (b-e) represent the networks estimated by the corresponding methods, with the TPR and F1 scores provided below each subfigure.
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5.1 Data
The data utilized in this study are obtained from single-cell 
RNA sequencing data of 220 TNBC cells (Chung et al. 
2017), accessible from the GEO database (ID: GSE75688). 
We select genes highly correlated with the disease, guided by 
the PAM50 gene set (Parker et al. 2009). Additionally, we 
reference other research studies (Lyu et al. 2018, Tang et al. 
2018) and incorporate hub genes from known breast cancer 
gene networks into the analysis. These hub genes are merged 
with the PAM50 gene set, resulting in a final selection of 79 
genes for subsequent investigation. The list of these genes can 
be found in Supplementary Section S10.

Given the presence of outliers significantly higher than the 
mean value in the dataset, we apply a logarithmic transforma
tion to satisfy the assumption of multivariate normality. The 
pBIC plot indicates the presence of three subtypes (Fig. 4a).

5.2 Results of cell classification and 
network inference
The 220 cell samples are divided into three categories, con
taining 91, 44, and 85 samples, respectively. Subtype 1 exhib
its a higher proportion of zero values, while Subtype 2 overall 
has higher gene expression values (Fig. 4b). In gene networks, 
we focus on the shared and specific relationships among sub
types. There are 66 relationships shared among the three sub
type networks. The first subtype exhibits 50, the second 
subtype exhibits 119, and the third subtype exhibits 78 
subtype-specific relationships. The complete gene network 
and cell classification results are demonstrated in 
Supplementary Tables S5 and S6, Figs S5–S8, and S12.

5.3 Biological significance
We first focus on the shared gene relationships (Fig. 5a). 
These relationships are present in all subtypes of TNBC, rep
resenting common biological features. Notably, FOXA1 
exhibits the highest gene degree and is implicated in the posi
tive regulation of the cell cycle pathway (Table 2). Previous 
studies have suggested that reduced FOXA1 expression may 
result in malignancy and enhanced cancer stemness, poten
tially due to disruptions in cell cycle regulation. Moreover, 
FOXA1 serves as a subtype marker for the identification of 
TNBC (Dai et al. 2019). FGFR4 also exhibits one of the high
est degrees. Elevated FGFR4 expression in TNBC is linked to 

poorer prognostic outcomes, such as reduced survival times, 
suboptimal chemotherapy responses, and increased lymph 
node metastasis (Wei et al. 2020).

We next focus on gene relationships specific to particular 
subtypes (Fig. 5b). These relationships provide insights into 
the cellular heterogeneity of TNBC. Subtype 2, among the 
three subtypes identified by AJGM, has the smallest sample 
size but the greatest number of gene interrelationships. Dense 
genetic networks may suggest enhanced or aberrant activation 
of specific signaling pathways. For instance, tumor growth and 
metastasis are accelerated by the activation of signaling path
ways involved in cell proliferation, invasion, and metastasis. 
Consequently, subtype 2 is likely the most invasive subtype. 
Enrichment analysis reveals that a greater number of genes in 
subtype 2 are associated with pathways involved in cancer cell 
metastasis and invasion compared to the other subtypes.

The hub genes of the three subtype-specific networks also 
differ. The hub gene of the first subtype is CDC20. Aberrant 
expression of CDC20 is associated with premature anaphase 
promotion, resulting in mitotic abnormalities that may con
tribute to tumorigenesis. The hub gene of the second subtype 
is MAP3K1, a key regulator of signaling cascades that control 
tumor proliferation and metastasis (Sun et al. 2015). 
MAP3K1, a member of the MAPK family, participates in 
multiple MAPK signaling pathways, as indicated by enrich
ment analysis, and regulates essential cellular processes re
lated to growth and survival (Kuo et al. 2023). The hub gene 
of the third subtype is MYC. Dysregulation of MYC pro
motes the accelerated development and metastasis of hetero
geneous triple-negative breast tumors, contributing to the 
emergence of more aggressive subtypes.

Additionally, we utilize two comparative methods, JGL 
(Danaher et al. 2014) and WGCNA (Langfelder and Horvath 
2008), for gene network construction. Enrichment analysis 
reveals that AJGM, with its superior network estimation ac
curacy, offers more biologically relevant insights. For exam
ple, AJGM identifies pathways promoting cell cycle 
activation and proliferation, such as Cell Cycle Checkpoint 
Signaling and Regulation of Mitotic Metaphase/Anaphase 
Transition. In contrast, JGL and WGCNA highlight path
ways like Negative Regulation of Cell Cycle and Negative 
Regulation of Cell Cycle Process, which are less aligned with 
the aggressive traits of TNBC. By prioritizing shared relation
ships between subtypes, AJGM effectively captures both 

Figure 4. (a) The BIC plot for selecting K. (b) The log-expression heatmap for scRNA-seq after cell classification, where darker shades indicate lower 
expression values and lighter shades indicate higher values.
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Figure 5. (a) Gene network for relationships shared across subtypes constructed from scRNA-seq of TNBC. (b) Gene networks for subtype-specific 
relationship constructed from scRNA-seq of TNBC.
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shared and distinct features of subtypes, enabling more in
sightful downstream biological analyses. More detailed infor
mation on the downstream biological analysis of TNBC can 
be found in Supplementary Section S11.

5.4 Application on bulk RNA-seq data of TNBC
Models similar to AJGM, capable of simultaneously perform
ing sample clustering and inferring networks, are particularly 
suited to scRNA-seq data. This capability arises from the 
model’s ability to utilize single-cell resolution data for precise 
cell classification. In contrast, bulk RNA-seq represents the 
average of cell populations, making it impossible to classify 
subtypes at the single-cell level. However, AJGM can still be 
applied to bulk RNA-seq data to construct gene networks for 
different subtypes.

We obtain bulk RNA-seq data for 108 TNBC samples 
from the TCGA project (The Cancer Genome Atlas Network 
2012) and select 79 genes consistent with those studied in the 
scRNA-seq analysis. AJGM classify the 108 samples into 
three groups, containing 22, 17, and 69 samples, respectively. 
In the gene networks, 152 edges are shared among all sub
types. Each subtype has 164, 36, and 91 unique edges, re
spectively. In the network of shared relationships, genes like 
FOXA1 and FOXC1 exhibit high degrees, similar to those in 
the network previously constructed using scRNA-seq data. 
Detailed network information is provided in Supplementary 
Tables S7 and S8 and Figs S9–S12, and S14.

5.5 Application on time-series sequencing data
We also apply AJGM to time series sequencing data to ex
plore the scalability of our proposed model. The first dataset 
is scRNA-seq data from Arabidopsis root procambium-type 
cells (Shahan et al. 2022), where all cells are annotated into 
10 distinct time points (T0–T10) through related models and 
manual verification. Based on AJGM, we reclassify the sam
ples into three stages: early, middle, and late stages. 
Moreover, since cells from time points that are close to each 
other tend to share more common pathways, we extend 
AJGM by dynamically adjusting the penalty term in the net
work order based on the prior time labels in the dataset, en
suring that the network is arranged in chronological order. 
The clustering results of the cells show high consistency with 
the dataset’s prior time labels, demonstrating the reliable sub
classification capability of AJGM. Additionally, we identify 
hub genes in the network corresponding to the respective 
time periods, with early-stage hub genes being more related 
to growth and development, while those in the middle and 
late stages are more associated with differentiation. The de
tailed analysis is provided in Supplementary Section S12.

The second dataset is single-cell RNA sequencing data of 
mouse embryonic stem cells (Klein et al. 2015), used to study 
the differentiation process regulated by leukemia inhibitory 

factor (LIF). The dataset is collected at four time points, and 
we select data from Day 0 (stage 1) and Day 7 (stage 2) to ex
plore hub genes affecting stem cell growth. By examining the 
network of shared relationships, we can observe which regu
latory relationships change across all cells in heterogeneous 
cell samples at different time points. The results indicate that 
LIF regulates stem cell pluripotency and inhibits differentia
tion, as shown by the reduced degree of genes related to dif
ferentiation, such as LEFTY2, CDX2, and COL1A1, at Day 
7. Detailed information about this real application can be 
found in Supplementary Section S13.

6 Discussion
We present a method named AJGM for estimating gene net
works from data exhibiting unknown heterogeneity. 
zCompared to existing methods, AJGM offers several advan
tages. Firstly, an overall network is introduced in joint estima
tion, with relationships shared by all samples being accurately 
captured, thus enhancing the entire estimation accuracy of the 
network. Secondly, it utilizes adaptive weights to automatically 
adjust similarity in network structures across networks, 
addressing theoretical limitations of existing methods as rela
tionships between different gene pairs may vary across sub
types. Moreover, AJGM can handle zero-inflated scRNA-seq 
data through data imputation, further extending the applicabil
ity of GGMs. Our AJGM consistently outperforms existing 
methods in network inference and sample classification on syn
thetic datasets, across datasets with varying numbers of sub
types and datasets exhibiting zero-inflation.

There are several directions to improve the current work. 
Although the reliability of data imputation method in AJGM 
has been demonstrated, applying this method to single-cell 
data can be challenging when a high proportion of zeros is 
present. This challenge arises because, during each iteration 
of the EM algorithm, even after parameter convergence, 
replacing zeros with sampled values can modify the dataset, 
requiring re-estimation of the parameters. To address this is
sue, employing a sampling method with robust convergence 
properties, such as Gibbs sampling, may prove effective.

In addition, the method for estimating the overall network 
can be improved. Theoretically, the overall network should 
only contain gene relationships present in all samples. 
However, it may also include relationships that are found in 
the majority of samples but are not necessarily present in all 
subtypes. One approach to addressing this issue can be sepa
rately estimate common and non-common parts of subtype 
networks (Wu et al. 2020). This method can yield an overall 
network that is more valuable in practical applications.

An important direction for future research involves en
hancing AJGM to support higher-dimensional network esti
mation. For instance, we are exploring its application to 

Table 2. Hub genes and Go term enrichment.

Network name Hubs Go term enrichment FDR

Overall network FOXA1, FGFR4 Mitotic cell cycle phase transition 1.40E−20
Positive regulation of cell cycle 1.84E−11
Positive regulation of kinase activity 3.65E−05

Subtype1-specific network CDC20 Cell cycle checkpoint signaling 4.70E−16
Subtype2-specific network MAP3K1 Regulation of stress-activated MAPK cascade 8.10E−05
Subtype3-specific network MYC Signal transduction by p53 class mediator 4.37E−10
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spatial transcriptomics data, enabling the joint estimation of 
gene networks across spatially adjacent cell subtypes. 
Furthermore, we aim to extend AJGM to temporal sequenc
ing datasets to capture dynamic regulatory relationships over 
time. A more ambitious endeavor would be the integration of 
spatial and temporal dimensions into a unified three- 
dimensional framework. These developments highlight the 
remarkable scalability and adaptability of AJGM for analyz
ing increasingly complex biological data.
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