
Subject Section

STAHD: a scalable and accurate method to de- 
tect spatial domains in high-resolution spatial 
transcriptomics data
Zhihua Du1, Di Wang1,2, Qiyi Chen1, Yuehua Ou1, Xinlei Huang2, Xiang 
Zhou3,*, and Xubin Zheng2,*

1College of Computer Science and Software Engineering, ShenZhen University, Shenzhen, China.
2Guangdong Provincial Key Laboratory of Mathematical and Neural Dynamical Systems, School of 
Computing and Information Technology, Great Bay University, Guangdong, China.
3Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China.

*Corresponding authors: Xubin Zheng, School of Information Science and Technology, Great Bay Universi- 

ty, Songshan Lake High-tech Zone, Dongguan, Guangdong, China. E-mail: xbzheng@gbu.edu.cn. Xiang 

Zhou, Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China. 

E-mail: zhouxiang2@gdiist.cn.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract
Motivation: Spatial transcriptomics (ST) enables the study of spatial heterogeneity in tissues. How- 
ever, current methods struggle with large-scale, high-resolution data, leading to reduced efficiency 
and accuracy in detecting spatial domains. A scalable, precise solution is urgently needed.
Results: We present STAHD, a scalable and efficient framework for spatial domain detection in ST 
data. Combining a graph attention autoencoder with multilevel k-way graph partitioning, STAHD de- 
composes large graphs into compact subgraphs and generates low-dimensional embeddings. This 
improves computational efficiency and clustering accuracy. Benchmarks on human and mouse da- 
tasets show STAHD outperforms existing methods and accurately reveals spatially distinct tumor 
microenvironments and functional regions.
Availability: Source code and data are available at: [https://github.com/Little-Eel/STAHD].
Contact: xbzheng@gbu.edu.cn; zhouxiang2@gdiist.cn
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Next-generation spatially resolved transcriptomics technologies are 
rapidly advancing toward high-resolution platforms such as 10x Visium 
HD (Oliveira et al., 2025), 10x Xenium (Xenium In Situ Platform, 2024), 
and CosMx (He et al., 2022), which enable subcellular resolution. This 
advance has led to a substantial increase in data volume, with sin- gle-
section datasets reaching millions of capture spots in recent studies 
(Kukanja et al., 2024; Liu et al., 2025; Oliveira et al., 2025). As a result, 
new computational challenges arise in accurately delineating spatial 
tissue architecture and identifying spatially specific gene expression 
patterns (Huang et al., 2024; Xie et al., 2025).

Existing spatial domain detection methods, such as SEDR (Xu et al., 
2024), STAGATE (Dong and Zhang, 2022), SpaceFlow(Ren et al., 
2022), and GraphST (Long et al., 2023), face challenges in scalability 
and clustering accuracy due to the rapidly increasing size of high- 
resolution ST datasets(Covert et al., 2023; Zhu et al., 2024). They typi- 
cally require loading the entire spatial neighbor graph into memory, 
resulting in high computational burden when processing million-cell- 
scale data. Furthermore, existing approaches have limited the capacity in 
modeling complex spatial interactions and technical noise, especially at 
domain boundaries. These limitations severely constrain the potential
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applications of high-resolution ST data in dissecting tissue heterogeneity 
(Xie et al., 2024; Zheng et al., 2024, 2021; Meng et al.).

To address these challenges, we propose STAHD, a scalable algo- 
rithm for spatial domain detection in high-resolution ST data(Fig. 1). 
STAHD employs a graph attention autoencoder to integrate spatial 
coordinates and gene expression, learning low-dimensional embeddings 
for spatial domain identification. An attention mechanism adaptively 
models spatial similarity, particularly at domain boundaries. To reduce 
computational burden, we leverage a multilevel k-way graph partition-

ing strategy to recursively divide large graphs into compact subgraphs 
for independent training, enabling efficient processing of million-cell- 
scale datasets. STAHD was validated on diverse ST datasets from mul- 
tiple platforms including 10x Visium(DLPFC), Visium HD(human 
tonsil and human breast cancer), Xenium(whole adult mouse), and 
CosMx(human lymph node), and consistently outperformed existing 
methods in distinguishing tissue structures and computational resource 
consuming

Figure 1 | Overview of STAHD.

a. Schematic workflow of STAHD.Inputs: a gene expression matrix and spatial coordinates. Processing steps: (i) normalization and selection of highly variable genes; (ii) construction of a 

spatial neighbor graph; (iii) multi-level k-way partitioning with coarsening and refinement to divide the graph into subgraphs; (iv) graph attention autoencoder for mini-batch training and 

latent representation learning; (v) reconstruction of input features and optimization via reconstruction loss. Outputs: spatially informed low-dimensional embeddings that preserve both 

gene expression and spatial structure while reducing computational overhead.

b. STAHD generates low-dimensional embeddings for visualization and clustering of high-resolution spatial transcriptomic data, while performing data denoising and enabling scalable 

analysis on tissue sections containing millions of spatial spots.

2 Materials and Methods

2.1 Datasets

To train and evaluate the applicability and performance of STAHD 
across diverse tissue architectures and spatial resolutions, five high- 
resolution spatial transcriptomics (ST) datasets generated from different 
sequencing platforms and tissue types were used in this study. Details 
and the preprocessing procedures of the datasets can be found in Sup- 
plementary File1.
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2.2 Spatial neighborhood graph construction
Based on the spatial coordinates of all capture spots, pairwise Euclid- 

ean distances were computed to quantify spatial proximity. Two spots 
were considered spatial neighbors if the distance between them was 
smaller than a predefined threshold r, which can be adjusted accordingly. 
According to these spatial neighborhood relationships, an undirected 
spatial neighbor graph was constructed and represented by an adjacency 
matrix A, where 𝐴𝑖𝑗=1 if an edge exists between spot i and spot j, and
𝐴𝑖𝑗=0 otherwise. Additionally, self-loop edges were added to each spot 
to preserve the self-information of each node during subsequent graph 
neural network computations. To ensure consistency across datasets 
with different spatial resolutions, STAHD employs an adaptive radius- 
selection module that automatically determines the spatial radius (r) 
based on each dataset’s resolution. The spatial radius r represents the 
physical distance used to define neighborhood relationships among spots 
and determines the number of neighboring spots, we evaluated model 
performance with respect to the average neighbor count, which provides 
a more interpretable measure of the effective neighborhood size. Sensi- 
tivity analysis on the DLPFC dataset (Supplementary Fig. S1c-d) 
showed that clustering performance was optimal when each spot had 
approximately 10-30 neighbors, achieving a balance between capturing 
spatial context and reducing noise. For other datasets, r was automatical- 
ly adjusted to maintain this neighbor range, ensuring biologically mean- 
ingful and consistent spatial connectivity across spatial platforms. This 
strategy follows the design adopted by STAligner(Zhou et al., 2023), 
ensuring cross-platform consistency in physical distance scaling.

2.3 Multilevel k-way graph partitioning strategy
To enable efficient analysis of large-scale spatial transcriptomics 

graph data, this study leverages a multilevel 𝑘-way graph partitioning 
strategy with graph neural networks. This approach progressively sim-

1, i.e., 𝑤(𝑣) = 1.The edges between super nodes are determined based 
on the connections among the original nodes. Specifically, if any pair of 
original nodes belonging to two different supernodes are connected in 
the original graph, an edge is established between the corresponding 
super nodes in the coarsened graph.

In standard multilevel graph partitioning methods, a coarsening ter- 
mination threshold 𝑁𝑐 is typically predefined. The coarsening process 
stops when the number of nodes in the coarsened graph |𝑉𝑖 |  drops below 
this threshold, at which point initial partitioning is performed. The value 
of 𝑁𝑐 is generally chosen based on the target number of partitions 𝑘, 
computational resources, or a trade-off between partition- ing speed and 
accuracy, with typical values ranging from 100 ≤ 𝑁𝑐 ≤ 1000.

In contrast, the METIS-based multilevel partitioning strategy adopted 
in this study employs an adaptive heuristic rule to dynamically deter- 
mine the termination point of coarsening without explicitly setting a 
fixed 𝑁𝑐. Specifically, the algorithm automatically decides the optimal 
coarsened graph scale based on the graph size after each coarsening 
iteration, the trend of cut-edge reduction, and partition quality estima- 
tions. This ensures that the final coarse graph is sufficiently small to 
improve initial partitioning efficiency while avoiding excessive coarsen- 
ing that would otherwise degrade partitioning accuracy.
Initial Partitioning. Initial Partitioning is performed on the coarsened 
graph 𝐺𝑚. Since the edges in the graph are unweighted (with all edge 
weights set to 1), the partitioning phase no longer relies on edge weights 
or extended subgraphs, but instead adopts a degree-based greedy grow- 
ing strategy. Specifically, the algorithm begins from multiple randomly 
selected seed supernodes and iteratively absorbs their unpartitioned 
neighboring supernodes into the current subgraph. Priority is given to 
neighboring super nodes with higher degrees to enhance intra-subgraph 
connectivity and minimize the number of cut edges. To ensure balanced 
partition sizes, the number of partitions is determined as:

plifies the original large graph, performs an initial partitioning, and 𝑁num_parts = ⌈ ⌉ × 10 (3)
subsequently refines the partitions, thereby decomposing million-node 
graphs into multiple structurally compact and load-balanced subgraphs 
for parallel training. This significantly reduces the computational com- 
plexity per training iteration. Specifically, let the original graph be de- 
noted  as  G0  = (V0, E0, w),  where  V0      is  the  set  of  nodes  with  size
|V0| = N,  and  E0    is  the  set  of  unweighted  edges.  The  edge  weight

batch_size

where the batch size was set to 256 by default, but can be adjusted ac- 
cording to the requirements of different spatial transcriptomics platforms 
and resolutions. Accordingly, the approximate capacity limit for a single 
subgraph is:

function is defined as:

𝑤(𝑒) = {1, if edge 𝑒 exists (1)

𝑁
cap = 

num_parts
𝑁

= N/(⌈
batch_size

256
⌉ × 10 ) ≈ = 25.6 (4)

10

0, otherwise

All nodes were initially assigned a uniform weight of 1, i.e., 𝑤(𝑣) =
1 for all 𝑣 ∈ 𝑉0 .To address the computational challenges posed by large-
scale graph partitioning, this method consists of three sequential stages: 
graph coarsening, initial partitioning, and multilevel refinement through 
uncoarsening:
Graph Coarsening. In the multilevel graph partitioning framework, the 
original graph 𝐺0  = (𝑉0, 𝐸0)  is progressively compressed into a series 
of coarsened graphs 𝐺1, 𝐺2, … , 𝐺𝑚 with decreasing sizes. In each coars- 
ening step, the algorithm randomly iterates over all unmatched nodes in 
the current graph. For each unmatched node 𝑢, one of its unmatched 
neighboring nodes 𝑣 is randomly selected, and the two are merged into 
a supernode denoted as 𝐶(𝑢, 𝑣). If no unmatched neighbor exists for 
node 𝑢, it is retained as an individual super node. The weight of each 
super node is defined as the sum of the weights of its constituent nodes:

𝑤(𝐶) = ∑ 𝑤 (𝑣) (2)
𝑣∈𝐶

where 𝐶 denotes the super node and 𝑣 represents the original nodes 
contained within it. All original nodes are initially assigned a weight of

Once the number of super nodes in a subgraph reaches this capacity, 
expansion for that subgraph stops, and the algorithm proceeds to build 
the next subgraph. After initial partitioning, a structurally compact and 
load-balanced subgraph division scheme is obtained.
Uncoarsening and Refinement. After initial partitioning on the coars- 
ened graph 𝐺𝑚, the partitioning results are progressively projected back 
to the original graph 𝐺0 through a series of uncoarsening steps. In each 
step from 𝐺𝑖 to 𝐺𝑖−1, the subgraph label of each supernode is propa- 
gated to all of its constituent nodes:

label(𝑣) = label(𝐶(𝑣)),      ∀𝑣 ∈ 𝐶 (5) 
To further improve partitioning quality, a local refinement procedure is 
applied to boundary nodes between subgraphs. Specifically, for each 
candidate boundary node 𝑣, the number of cut edges connected to other 
subgraphs before the potential migration is computed and denoted as 
cutbefore(𝑣). Then, the number of cut edges is recalculated under the 
hypothetical scenario in which node 𝑣 is migrated to a neighboring 
subgraph  𝑉𝑗 , denoted as  cutafter(𝑣). The gain in cut reduction achieved 
by this migration is defined as:

𝑔(𝑣) = cutbefore(𝑣) − cutafter(𝑣) (6)
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If 𝑔(𝑣) > 0, indicating that the migration would reduce the total num- 
ber of cut edges and improve subgraph compactness, the algorithm 
further checks whether the target subgraph 𝑉𝑗 satisfies the capacity 
constraint:

|𝑉𝑗| + 1 ≤ cap (7)

to reconstruct the original gene expression features. At each layer 𝑘 = 
1,2, … , 𝐿 − 1, the reconstructed representation of node 𝑖 is:

𝑍̂ (𝑘)  =    ∑   𝛼̂(𝑘)  𝜎(𝑊̂ (𝑘+1)𝑍̂ (𝑘+1)) (12)
𝑗∈𝒩(𝑏)

where  𝑊̂ (𝑘+1)  = (𝑊 (𝑘+1)  
⊤    

and  𝛼̂(𝑘)  = 𝛼 (𝑘+1). The final layer recon-
If both conditions are met, the migration operation is performed: node 𝑣 )

𝑖�

�

𝑖𝑗

is  moved  from  its  current  subgraph  to  the  target  subgraph  𝑉𝑗 ,  and  its 
label is updated accordingly. This process iterates over all eligible 
boundary nodes, sequentially applying migrations to reduce inter- 
subgraph cut edges while maintaining balanced partition loads. Finally,

structs the gene expression features as:

𝑍̂ (𝐿)  = 𝜎(𝑊̂ (1)𝑍̂ (1)) (13)

The output  𝑍̂(𝐿)    represents the reconstructed gene expression profile for
this results in a high-quality partitioning on the original graph 𝐺0 with 
compact, well-defined subgraph boundaries and balanced sizes, provid- 
ing an optimized structural foundation for subsequent graph neural 
network training.

2.4 Graph attention autoencoder
We partition the original graph into several structurally compact sub- 
graphs with balanced node counts, serving as the basic units for model 
training. During training, a mini-batch loading strategy is employed, 
where each batch consists of multiple subgraphs. The default batch size 
is set to 10 (a tunable hyperparameter) to balance computational load  
per iteration and model convergence speed.
The  encoder  takes  the  gene  expression  matrix  𝑋(𝑏) ∈ ℝ𝑛𝑏×𝑑    and the
corresponding  spatial  adjacency  matrix  for  each  subgraph  as  input,

node 𝑖.

To ensure the latent embedding preserves the information of the original 
gene expression data, a graph attention autoencoder structure is adopted, 
with the reconstruction error of the gene expression matrix as the prima- 
ry optimization objective. Given the original input expression matrix
𝑋(𝑏) ∈ ℝ𝑛𝑏×𝑑 and the subgraph structure 𝐺𝑏, the encoder produces the 
latent representation 𝑍(𝑏) ∈ ℝ𝑛𝑏×𝑑, and the decoder reconstructs it as:

𝑋̂(𝑏)  = 𝑍 (𝑏)𝑊𝑑  + 𝑏 (14)

where 𝑊𝑑 ∈ ℝ𝑑×𝑝 and 𝑏 ∈ ℝ𝑝 are the decoder parameters, with 𝑑 =
30 as the embedding dimensionality. The training objective minimizes 
the mean squared reconstruction error (MSE):

𝑚

where 𝑛𝑏 denotes the number of nodes in subgraph 𝑏, and 𝑑 is the 
dimensionality of gene expression features. The encoder comprises 𝐿

ℒrecon = ∑∥𝑋 (𝑏)  − 𝑋̂(𝑏)   2

𝑏=1

(15)

graph attention layers that iteratively extract node-level latent represen- 
tations.  The  representation  of  node  𝑖   at   the   𝑘  -th   layer   (𝑘  = 
1,2, … , 𝐿 − 1) is computed as:

𝑍(𝑘) = 𝜎 ( ∑ 𝛼(𝑘) 𝑊(𝑘)𝑍(𝑘−1)) (8)
𝑗∈𝒩(𝑏)

where ∥⋅∥𝐹 denotes the Frobenius norm. To prevent gradient explosion, 
gradient clipping is applied during training, limiting the gradient norm  
to 5. A three-layer network with an embedding dimension of 64 was 
implemented and optimized using the Adam optimizer with a learning 
rate of 0.001 and a weight decay of 1e-4. The model was trained for 
1000 epochs and executed on an NVIDIA GPU.

For  comparison,  we  adopted  the  official  implementations  of  the
benchmark  methods  (SEDR,  STAGATE,  SpaceFlow,  GraphST,  andwhere 𝑍(0) = 𝑋(𝑏) is the initial feature of node 𝑖, 𝑊(𝑘) is the traina-

𝑖 𝑖

ble weight matrix at the 𝑘-th layer, 𝜎(⋅) is a nonlinear activation func- 
tion, and 𝒩(𝑏) denotes the neighborhood of node 𝑖 (including  itself). 
The attention coefficient 𝛼(𝑘) adaptively measures the influence of 
neighboring node 𝑗 on node 𝑖, computed as:

exp(𝑒(𝑘))

PAST(Li et al., 2023)) and followed their recommended or default 
hyperparameter settings. All methods were applied to the same prepro- 
cessed datasets under identical experimental conditions to ensure a fair 
and reproducible comparison. All experiments were performed on a 
Linux server (kernel version 6.8.0) equipped with 40 CPU cores, 503 
GB of system RAM, and two NVIDIA RTX A5000 GPUs (each with 24
GB memory).

(𝑘)
𝑖𝑗

𝑖𝑗
∑ exp (𝑒(𝑘)) (9)

𝑙∈𝒩(𝑏) 𝑖𝑙

where 𝑒(𝑘) represents the association score between node 𝑖 and its 
neighbor 𝑗, defined as:

3 Results

3.1 Overview of STAHDSigmoid ((𝑎(𝑘) 
⊤ 

𝑊(𝑘)𝑍(𝑘−1) ∥ 𝑊(𝑘)𝑍(𝑘−1)]) , if 𝐴 = 1
(𝑘)
𝑖𝑗

)  [ 𝑖 𝑗
𝑖�

�

(10) STAHD takes the normalized gene expression matrix and spatial coor-

0, otherwise

Here, ∥ denotes vector concatenation, 𝑎(𝑘) is  a  learnable  attention 
vector at layer 𝑘, and ⊤ indicates matrix transposition. The final 𝐿-th 
layer omits the attention mechanism and directly computes the latent 
embedding as:

𝑍(𝐿)  = 𝜎(𝑊(𝐿)𝑍(𝐿−1)) (11)

The output 𝑍(𝐿)  is treated as the final latent representation of node  𝑖
for downstream tasks.

The decoder is symmetric to the encoder, reversing the encoding process

dinates of tissue sections as input, and learns latent representations by 
modeling both transcriptional profiles and spatial information. For each 
spatial transcriptomics slice, STAHD first constructs spatial neighbor 
graph based on the spatial coordinates of all capture spots. This process 
involves computing pairwise Euclidean distances, determining neigh- 
borhood relationships using a predefined distance threshold, and subse- 
quently constructing adjacency matrix. To enhance scalability for large- 
scale spatial transcriptomics datasets, STAHD recursively divides the 
original graph into several locally compact and computationally bal- 
anced subgraphs as inputs using multilevel k-way graph partitioning. 
This ensures that local neighborhood structures are preserved within
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each partition while enabling independent and parallel training of sub- 
graphs.

Subsequently, a graph attention autoencoder is employed to inde- 
pendently encode each subgraph. The encoded low-dimensional embed- 
dings are then decoded to recover the original input features, with the 
reconstruction error serving as the model’s optimization objective. By 
minimizing the reconstruction loss, STAHD effectively captures low- 
dimensional representations that preserve both spatial structural context 
and transcriptional feature information, providing a reliable foundation 
for downstream analysis.

Finally, STAHD enables multiple functionalities, including spatial 
domain identification and visualization, data denoising, and scalable 
analysis for large-scale spatial transcriptomics datasets

3.2 Comparison of STAHD with Four Methods on 10x Vis- 
ium DLPFC slice for Spatial Clustering

To systematically evaluate the performance of STAHD, we bench- 
marked it against five widely used unsupervised spatial domain detec- 
tion methods: SEDR, STAGATE, SpaceFlow, GraphST, and PAST 
using the 10x Visium human dorsolateral prefrontal cortex (DLPFC) 
dataset consisting of 12 tissue sections. Manual annotations of cortical 
layers (Layer 1–6 and white matter) were used as the gold standard for 
evaluation (Fig. 2a). This demonstrates that STAHD successfully bal- 
ances computational efficiency with accuracy. Further quantitative 
analysis based on ARI 、 NMI 、 AMI and Homogeneity across the 12 
sections (Fig. 2b) confirmed that STAHD achieved the highest median 
ARI (0.62). In addition, Supplementary Fig. S1 provides a more com- 
prehensive comparison across multiple metrics. The bar plots (Fig. S1a) 
show that STAHD attains the overall highest or comparable scores 
among all benchmark methods, while the box plots (Fig. S1b) illustrate 
its robust performance across datasets, characterized by higher median 
scores and reduced variance. Outperforming all competing methods 
even though they used full-graph training (Fig. 2c). To assess the statis- 
tical significance of these performance differences, pairwise Wilcoxon 
signed-rank tests were conducted between STAHD and each benchmark 
method, with p-values adjusted using the Benjamini–Hochberg proce- 
dure and significance thresholds set at p < 0.05 (*), p < 0.01 (**), and p
< 0.001 (***)(Table S5).These results validate the superior overall per- 
formance of STAHD in terms of both accuracy and scalability. It is 
worth noting that ARI was computed only for the DLPFC dataset with 
available manual annotations, whereas for other datasets lacking ground-
truth labels, performance was assessed through biological vali- dation, 
including morphology, marker genes, and functional coherence.

Moreover, by integrating spatial coordinates, STAHD precisely com- 
puted the relative distances between spatial domains and visualized the 
spatial spots via UMAP dimensionality reduction (Fig. 2d). Taking 
sample #151673 as an example, the UMAP projection generated from 
STAHD embeddings clearly depicted a hierarchical spatial gradient 
extending from superficial Layer 1 to deeper Layer 6 and white matter, 
faithfully recapitulating the anatomically ordered structure of the human 
cerebral cortex. This observation is highly consistent with known neuro-

biological principles, as adjacent cortical layers exhibit functional cou- 
pling (Gilmore and Herrup, 1997) . We assessed the sensitivity of 
STAHD to subgraph size on the Xenium whole adult mouse dataset by 
varying the batch size parameter (512–8192). Clustering consistency 
across different settings was evaluated using Cramér’s V, which is ro- 
bust to label permutations and does not require ground-truth annotations. 
As shown in Supplementary Fig. S2a, the results remained highly con- 
sistent (Cramér’s V ≈ 1), indicating that STAHD is robust to sub- 
graph size and that varying batch size does not substantially affect spa- 
tial domain detection.

3.3 Spatial Domain Identification on the Xenium Whole 
Adult Mouse Dataset Using STAHD

STAHD was further applied to the 10x Xenium Adult Mouse Dataset, 
which includes 1,298,870 cells. The method identified major anatomical 
regions such as skin, muscle, skeletal areas, brain, and retina nerve 
tissues. It also delineated spatial domains enriched in epithelial cells, 
immune clusters, pulmonary endothelial, and mesenchymal cells (Fig. 
2e).

To validate these domains, we examined region-specific marker genes. 
The clustering results showed strong consistency with known biological 
annotations. Notably, Actn2 showed high expression in mus- cle tissue 
(Murphy and Young, 2015), Abcb4 was significantly ex- pressed in the 
liver (Lipiński et al., 2021), Akap5 was enriched in the lung (Lester et 
al., 1997) , and Adcy1 predominantly localized to brain regions (Wong 
et al., 1999). The denoised data by STAHD revealed clearer spatial 
expression for markers such as Abcb4, Akap5, and Adcy1,which were 
fragmented in the original dataset (Fig. 2f).This demonstrates that 
STAHD enhances data interpretability and preserves biological signals.

We further visualized gene expression across anatomical regions us- 
ing a heatmap (Fig. 2g). Region-enriched genes included Igf2, H19, 
Myh8, and Actn2 in muscle, and Apoa1, Fgg, and Afp in liver, confirm- 
ing the biological relevance of STAHD-identified domains.

STAHD also demonstrated excellent memory efficiency. It required 
only 2.1 GB of GPU memory to analyze over 1 million cells. As the cell 
number increased from 52,000 to 130,000, runtime increased from 4,000 
to 20,000 seconds (Fig. 2h), much lower than the expected 2.5× growth. 
In contrast, mainstream methods failed due to out-of-memory errors. 
These results confirm that STAHD not only scales effectively for ultra- 
large spatial datasets but also maintains high analytical accuracy and 
stability. Although STAHD scales efficiently to large datasets, its com- 
putational efficiency is less competitive on very small datasets due to  
the fixed overhead of preprocessing steps such as graph coarsening and 
mini-batch training. For datasets with fewer than ~50,000 spots, tradi- 
tional methods (e.g.STAGATE) are expected to run faster with compa- 
rable accuracy. In contrast, STAHD is particularly advantageous for 
medium to large scale analyses, where it enables efficient processing of 
hundreds of thousands to millions of spots with substantially reduced 
memory usage.
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Figure 2| STAHD Performance Analysis: Benchmarking on Human DLPFC Slices and adult mouse slice.

a. Ground-truth manual annotations of human DLPFC slices.

b. Benchmarking across 12 DLPFC slices: STAHD achieves the highest median ARI, significantly outperforming alternative methods (STAGATE, GraphST, SpaceFlow, SEDR, and PAST) based 

on Wilcoxon signed-rank tests.

c. Clustering results on slice 151673: STAHD achieves the best concordance with ground-truth layers (ARI = 0.62), compared to other methods.

d. UMAP visualizations for DLPFC data section 151673,using low-dimensional embeddings from STAHD,colored by the layer annotation of spots.

e. STAHD identifies spatial domains in the xenium_whole_adult_mouse dataset, capturing diverse tissue types such as skin, muscle, lung, and brain.

f. Spatial organization substructure of some of the marked genes and visualizations of the raw spatial expressions and STAHD denoised ones in the xenium_whole_adult_mouse.

g. Heatmap of tissue-specific marker gene expression profiles in the xenium_whole_adult_mouse dataset.

h. Scalability analysis: STAHD maintains low memory usage and training time, with memory scaling sublinearly with the number of spots, outperforming other methods.
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3.4 STAHD reveals fine-scale spatial domains in human 
lymph node CosMx data

We applied STAHD to the CosMx human lymph node single-cell spatial 
transcriptomics dataset(CosMx Human Lymph Node FFPE Dataset, 
2025), which comprises 1,852,946 spots and 6,520 genes, the largest 
available single-cell spatial transcriptomics dataset. Fig. 3a presents the 
high-resolution morphological image of the tissue section, providing 
histological reference for subsequent spatial clustering analysis.

Focusing on organ-level functional structure identification, we clus- 
tered 5 spatial domains. STAHD successfully delineated the germinal 
center, T-cell zone, activated immune cell region, stromal region, and T- 
cell enriched zone (Fig. 3b), with spatial distribution patterns highly 
consistent with anatomical tissue structures. Further spatial mapping 
analysis integrating representative marker genes, such as CCL21(Förster 
et al., 1999), CD74(Serviss et al., 2018), MKI67(Scholzen and Gerdes, 
2000),and IL7R(Mazzucchelli and Durum, 2007), enabled biological 
functional annotation of distinct spatial domains (Fig. 3c). The results 
showed strong concordance between each functional domain and the 
spatial enrichment of corresponding marker genes, validating STAHD’s 
accuracy in resolving organ architecture.
UMAP results (Fig. 3d) show that STAHD improves the separation of 
spatial structures, revealing clear and distinct clusters that reflect both 
local and global spatial features. All UMAP visualizations were generat- 
ed using a uniform Scanpy workflow with fixed parameters to ensure 
comparability across figures. Further analysis of cluster-specific differ-

entially expressed genes identified the top three marker genes per cluster 
(Fig. 3e), indicating unique and significant expression patterns across 
spatial regions. For example, IGFBP7(Broughton et al., 2010) and 
CCL21(Förster et al., 1999) were highly expressed in the lymph node 
stroma, IGHM(Seifert et al., 2015) were enriched in the germinal center, 
and IL7R(Mazzucchelli and Durum, 2007) and TRBC2(Emerson et al., 
2017) predominantly expressed in the T-cell zone, confirming the bio- 
logical relevance of STAHD’s spatial clustering results. Functional 
enrichment analysis (Fig. S4b) further revealed significant differences in 
immune-related pathways among spatial domains. The germinal center 
was predominantly enriched for B cell receptor signaling and B cell 
activation pathways, whereas the T-cell zone was enriched in T cell 
activation and T cell receptor signaling pathways, reflecting active im- 
mune microenvironments in distinct regions and underscoring STAHD’s 
utility in dissecting spatial microenvironmental heterogeneity.

In terms of computational performance, STAHD demonstrated supe- 
rior efficiency compared to STAGATE, GraphST, SpaceFlow, and 
SEDR (Fig. 3f,g). For datasets exceeding 10,000 cells, STAHD main- 
tained an O(n log n) time complexity, while comparative methods ex- 
hibited quadratic O(n²) growth. Thanks to its memory-optimized design, 
STAHD stably completed analyses of million-cell scale single-cell 
spatial transcriptomics data, avoiding common out-of-memory issues 
encountered by mainstream methods, and demonstrating excellent 
scalability and computational robustness.
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Figure 3 | Spatial domain delineation and cellular mapping in human lymphoid tissue using STAHD

a. High-resolution morphological image of CosMx lymph node tissue section.

b. Spatial domains identified by STAHD reveal anatomically coherent structures.

c. Mapping of Leiden clusters and representative marker gene expression in spatial context.

d. UMAP projection shows transcriptional heterogeneity across spatial domains.

e. Top three differentially expressed genes (log₂ fold change) for each Leiden cluster.

f. Memory consumption scales linearly with number of cells in CosMx lymph data.

g. Runtime analysis of STAHD with increasing cellular resolution in CosMx lymph tissue.
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3.5 Spatial Structure Identification and Functional Annota- 
tion of Human Tonsil Based on STAHD

We applied the STAHD method to analyze human tonsil spatial tran- 
scriptomics data generated by the 10x Visium-HD platform. The mor- 
phological image of the tissue section (Fig. 4a) clearly displays the 
typical structural features, providing an intuitive spatial context for 
subsequent spatial domain segmentation and marker gene localization. 
We then performed spatial clustering of cellular populations within the 
tissue section Based on differential gene expression analysis and spatial 
expression patterns, we biologically annotated the resulting clusters, 
delineating distinct functional spatial domains and their potential biolog- 
ical roles within the tissue.

STAHD partitioned the tonsil tissue into seven biologically meaning- 
ful spatial microenvironments (Fig. 4b), including naive B cell zones, 
crypt epithelium, germinal centers (GC B cells/FDC), inflamed/ neutro- 
phil-enriched crypt epithelium, plasma cell-enriched zones, submucosal 
fibroblast regions, and T cell zones (paracortex). This spatial distribu- 
tion pattern faithfully reflects the typical immune microenvironment 
architecture of tonsil tissue, with distinct immune cell populations ex- 
hibiting clear spatial partitioning and heterogeneity, highlighting the 
organ’s role as a key mucosa-associated lymphoid tissue with important 
immunoregulatory functions.

To further validate the accuracy of spatial domain annotations, repre- 
sentative marker genes were selected for spatial expression visualization 
(Fig. 4c). The results show that IGHG1(Chen et al., 2023) is primarily 
expressed in the plasma cell-enriched region, CCL21(Förster et al., 1999) 
is enriched in the T cell zone, HIST1H1B(Ripoll et al., 2008) is highly 
expressed in germinal centers, and IGHD(Seifert et al., 2015) is mainly 
localized to the B cell zone. These spatially restricted expression pat- 
terns are highly consistent with histological structures, confirming the 
biological validity and accuracy of the STAHD-based spatial domain 
delineation.

Stacked violin plots (Fig. 4d) showed distinct marker gene expression 
across spatial domains, such as IGHG1 and IGHM in plasma cell re- 
gions, CCL21 in the T cell zone, and HIST1H1B in germinal centers, 
highlighting transcriptional heterogeneity. GO analysis of the crypt 
epithelium (Fig. 4e) revealed enrichment in epithelial barrier and im- 
mune response processes, supporting its functional annotation.

Finally, we compared memory consumption of STAHD with other 
mainstream spatial omics analysis methods, including STAGATE, 
GraphST, SpaceFlow, and SEDR. When applied to large-scale Xenium 
spatial transcriptomics data (Fig. 4f). STAHD demonstrated consistently 
lower memory usage while analyzing large-scale cellular data, signifi- 
cantly outperforming other methods.

3.6 STAHD Reveals Complex and Refined Spatial Struc- 
tures in Human Breast Cancer Tissue through Spatial 
Clustering Analysis

We applied STAHD approach to analyze human breast cancer spatial 
transcriptomics data generated using the 10x Visium-HD platform, 
systematically exploring spatial heterogeneity within the tumor micro- 
environment. Breast cancer exhibits pronounced intratumoral heteroge- 
neity, characterized by complex cellular compositions and spatial struc- 
tural features(Shan et al., 2022; Bai et al., 2024). Fig. 5a illustrates the 
spatial transcriptomic map of the breast cancer tissue section, with total

UMI counts reflecting spatial variation in transcriptional activity and 
serving as the basis for spatial clustering.

We finely delineated spatial regions within the tumor tissue section 
(Fig. 5b). The identified domains include the stroma (rich in fibroblasts), 
ductal epithelium (ER+ breast cancer cells), periductal area (HER2+ 
breast cancer cells), stromal vascular region (vascular smooth muscle 
cells), and immune infiltration region (T cells and macrophages). The 
stroma primarily localizes to interstitial spaces and is fibroblast-rich; the 
ductal epithelium consists of clustered ER+ cancer cells surrounding 
glandular structures; the periductal area is dominated by HER2+ cancer 
cells located adjacent to ducts; the stromal vascular region is enriched in 
vascular smooth muscle cells near blood vessels; and the immune infil- 
tration region mainly comprises T cells and macrophages, frequently 
found at tumor margins and areas of necrosis. This spatial distribution 
reveals the heterogeneity and spatial organization of distinct cellular 
populations within breast cancer tissue, providing a foundation for dis- 
secting tumor microenvironment cellular interactions and spatial de- 
pendency mechanisms.

We further performed differential expression analysis (Fig. 5c), se- 
lecting representative marker genes for each spatial domain and visual- 
izing their expression patterns. COL1A1(Oskarsson, 2013) is highly 
expressed in the periductal area; SLC39A6(Taylor et al., 2008) predomi- 
nantly localizes to the ductal epithelium; CD24(Kristiansen et al., 2003) 
shows widespread expression in the stroma; MYH11(Hao et al., 2021) 
Integrated analysis of multimodal is specifically enriched in the stromal 
vascular region; and TCIM exhibits elevated expression within the im- 
mune infiltration region. The spatial expression profiles of these markers 
corroborate the STAHD-derived spatial annotations, further validating 
the accuracy of domain identification while unveiling molecular charac- 
teristics and spatial distributions of different cellular populations within 
the tumor tissue.

UMAP visualization (Fig. 5d) shows that cells form distinct clusters 
corresponding to spatial domains, confirming alignment between spatial 
location and transcriptomic profiles. STAHD achieves lower memory 
usage than SEDR, SpaceFlow, and GraphST across various cell counts 
(Fig. 5e), demonstrating superior scalability. GO enrichment analysis 
(Fig. 5f) reveals that ductal epithelium is involved in angiogenesis and 
epithelial maintenance, while the periductal area is enriched in processes 
related to adhesion and metal ion regulation, supporting the functional 
relevance of spatial domains.
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Figure 4 | Spatial domain identification and biological annotation of human tonsil using STAHD.

a. Morphological image of human tonsil tissue slice captured by the 10x Visium-HD platform.

b. Spatial domain identification results obtained by STAHD, including B cell zone, crypt epithelium, germinal center, inflamed/neutrophil-rich crypt epithelium, plasma cell-rich area, 

subepithelial fibroblast zone, and T cell zone.

c. Spatial expression heatmaps of representative marker genes, showing domain-specific expression patterns across different anatomical structures.

d. Stacked violin plots of marker gene expression levels in annotated spatial domains, illustrating the transcriptional heterogeneity within human tonsil tissue.

e. GO biological process enrichment analysis of the crypt epithelium domain

f. Comparison of memory consumption for STAHD, STAGATE, GraphST, spaceflow, and SEDR on large-scale Xenium spatial transcriptomics datasets
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Figure 5 | Spatial mapping of tissue structures and transcriptional heterogeneity in human breast cancer using STAHD.

a. High-resolution spatial transcriptomic map of a human breast cancer section, showing total UMI counts per bin to reveal spatial variation in transcriptional activity.

b. Spatial domains identified within the tissue, corresponding to distinct histological regions.

c. Distribution of Leiden clusters and key marker genes, highlighting cell type-specific spatial patterns.

d. UMAP visualization of CosMx lymphatic cells, showing transcriptional heterogeneity among immune populations.
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e. Memory usage as a function of cell number for the high-resolution breast cancer dataset.

f. GO enrichment analysis of stromal vascular regions, indicating enrichment in immune-related and metabolic processes.

4 Discussion
STAHD effectively mitigates high memory consumption challenges 
faced by traditional full-graph-based methods when analyzing ultra- 
large-scale spatial transcriptomics data. On million-cell datasets gener- 
ated by the Xenium platform, STAHD completes training within 4 hours 
on a 24 GB GPU, which cannot be accomplished by mainstream meth- 
ods such as STAGATE and GraphST. In contrast to other approaches, 
STAHD avoids holding the entire spatial neighbor graph in memory. By 
partitioning the graph into compact subgraphs and training them in mini- 
batches, STAHD prevents memory overload while preserving local 
structures. This strategy enables stable analysis of million-cell datasets 
with only 2.1 GB of GPU memory, highlighting its scalability advantage. 
The graph coarsening step in STAHD conceptually resembles “meta- 
cells” in single-cell analysis, as both aggregate similar units to reduce 
complexity. However, unlike metacell methods that group cells by mo- 
lecular similarity, STAHD’s coarsening is driven by spatial adjacency 
and graph topology, and the coarsened units are later refined back to the 
original graph. These supernodes could nevertheless be explored as 
spatial metacells for downstream analysis in future work. At present, 
STAHD primarily builds adjacency graphs based on spatial proximity, 
without fully incorporating multimodal spatial omics data—such as 
histological image features, proteomics (Cheng et al., 2019), and spatial 
metabolomics. Expanding its integration of these modalities is a key 
direction for future work to enhance its ability to capture complex cross- 
hierarchical spatial structures. We further examined the impact of differ- 
ent clustering algorithms on spatial domain identification. The results 
demonstrated that STAHD produced generally consistent spatial struc- 
tures across Leiden, K-means, and Mclust clustering, with only minor 
local variations (Supplementary Fig. S3).

In our experiments, the number of clusters was determined by dataset 
characteristics: seven for DLPFC (matching ground-truth annotations), 
and empirically chosen for others to ensure stability and biological 
interpretability, resulting in 13 for the Xenium mouse dataset, 5 for 
human lymph node (CosMx), 7 for tonsil, and 5 for breast cancer tissue. 
From a practical perspective, because STAHD introduces additional 
preprocessing overhead, it is particularly suitable for medium-to-large 
spatial transcriptomics datasets (hundreds of thousands to millions of 
spots) or in scenarios where memory constraints make full-graph train- 
ing infeasible; for smaller datasets (on the order of 10⁴ spots or fewer), 
existing full-graph methods may provide faster turnaround. Detailed 
runtime and memory usage measurements for all datasets are provided 
in Supplementary Table S1-Table S4, alongside the performance plots, 
to facilitate a direct comparison with other methods. Furthermore, as 
multiomics play an important role in deciphering tissues (Jin et al., 
2024), we will extend our method to spatial multiomics in the near fu- 
ture(Huang et al., 2025).

Code and Data Availability
The source code of STAHD used in this study has been archived on 
Zenodo (https://doi.org/10.5281/zenodo.17214602), corresponding to 
version v1.0.0 that was used to generate the results presented in this 
manuscript. The latest development version is available on GitHub at 
https://github.com/Little-Eel/STAHD.

All spatial transcriptomics datasets used in this study are publicly 
available. Detailed sources and download links are listed below:10x

Visium human dorsolateral prefrontal cortex (DLPFC) dataset and tuto- 
rials:
https://support.10xgenomics.com/spatial-gene- 
expression/datasets/1.2.0/V1_Human_DLPFC .

Xenium platform whole adult mouse brain dataset (xeni- 
um_whole_adult_mouse),including data and tutorials: 
https://www.10xgenomics.com/datasets/xenium-prime-ffpe-neonatal- 
mouse.

CosMx SMI human lymph node dataset (Cosmx lymph) from NanoS- 
tring:https://nanostring.com/products/cosmx-spatial-molecular- 
imager/ffpe-dataset/cosmx-human-lymph-node-ffpe-dataset/.

10x Genomics Visium-HD human breast cancer dataset (FFPE-IF): 
https://www.10xgenomics.com/datasets/visium-hd-cytassist-gene- 
expression-libraries-human-breast-cancer-ffpe-if.

10x Genomics Visium-HD human tonsil dataset (fresh frozen, IF): 
https://www.10xgenomics.com/datasets/visium-hd-cytassist-gene- 
expression-human-tonsil-fresh-frozen-if
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Figure 1 | Overview of STAHD. 
a. Schematic workflow of STAHD.Inputs: a gene expression matrix and spatial coordinates. Processing 

steps: (i) normalization and selection of highly variable genes; (ii) construction of a spatial neighbor graph; 
(iii) multi-level k-way partitioning with coarsening and refinement to divide the graph into subgraphs; (iv) 

graph attention autoencoder for mini-batch training and latent representation learning; (v) reconstruction of 
input features and optimization via reconstruction loss. Outputs: spatially informed low-dimensional 
embeddings that preserve both gene expression and spatial structure while reducing computational 

overhead. 

b. STAHD generates low-dimensional embeddings for visualization and clustering of high-resolution spatial 
transcriptomic data, while performing data denoising and enabling scalable analysis on tissue sections 

containing millions of spatial spots. 
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Figure 2 | STAHD Performance Analysis:  Benchmarking on Human DLPFC Slices and adult mouse slice. 
a. Ground-truth manual annotations of human DLPFC slices. 

b. Benchmarking across 12 DLPFC slices: STAHD achieves the highest median ARI, significantly 
outperforming alternative methods (STAGATE, GraphST, SpaceFlow, SEDR, and PAST) based on Wilcoxon 

signed-rank tests. 
c. Clustering results on slice 151673: STAHD achieves the best concordance with ground-truth layers (ARI = 

0.62), compared to other methods. 
d. UMAP visualizations for DLPFC data section 151673,using low-dimensional embeddings from 

STAHD,colored by the layer annotation of spots. 
e. STAHD identifies spatial domains in the xenium_whole_adult_mouse dataset, capturing diverse tissue 

types such as skin, muscle, lung, and brain. 
f. Spatial organization substructure of some of the marked genes and visualizations of the raw spatial 

expressions and STAHD denoised ones in the  xenium_whole_adult_mouse. 
g. Heatmap of tissue-specific marker gene expression profiles in the xenium_whole_adult_mouse dataset. 
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h. Scalability analysis: STAHD maintains low memory usage and training time, with memory scaling 
sublinearly with the number of spots, outperforming other methods. 
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Figure 3 | Spatial domain delineation and cellular mapping in human lymphoid tissue using STAHD 
a. High-resolution morphological image of CosMx lymph node tissue section. 

b. Spatial domains identified by STAHD reveal anatomically coherent structures. 
c. Mapping of Leiden clusters and representative marker gene expression in spatial context. 

d. UMAP projection shows transcriptional heterogeneity across spatial domains. 
e. Top three differentially expressed genes (log₂ fold change) for each Leiden cluster. 

f. Memory consumption scales linearly with number of cells in CosMx lymph data. 
g. Runtime analysis of STAHD with increasing cellular resolution in CosMx lymph tissue. 
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Figure 4 | Spatial domain identification and biological annotation of human tonsil using STAHD. 
a. Morphological image of human tonsil tissue slice captured by the 10x Visium-HD platform. 

b. Spatial domain identification results obtained by STAHD, including B cell zone, crypt epithelium, germinal 
center, inflamed/neutrophil-rich crypt epithelium, plasma cell-rich area, subepithelial fibroblast zone, and T 

cell zone. 
c. Spatial expression heatmaps of representative marker genes, showing domain-specific expression 

patterns across different anatomical structures. 
d. Stacked violin plots of marker gene expression levels in annotated spatial domains, illustrating the 

transcriptional heterogeneity within human tonsil tissue. 
e. GO biological process enrichment analysis of the crypt epithelium domain 

f. Comparison of memory consumption for STAHD, STAGATE, GraphST, spaceflow, and SEDR on large-scale 
Xenium spatial transcriptomics datasets 
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Figure 5 | Spatial mapping of tissue structures and transcriptional heterogeneity in human breast cancer 
using STAHD. 

a. High-resolution spatial transcriptomic map of a human breast cancer section, showing total UMI counts 
per bin to reveal spatial variation in transcriptional activity. 

b. Spatial domains identified within the tissue, corresponding to distinct histological regions. 
c. Distribution of Leiden clusters and key marker genes, highlighting cell type-specific spatial patterns. 
d. UMAP visualization of CosMx lymphatic cells, showing transcriptional heterogeneity among immune 

populations. 
e. Memory usage as a function of cell number for the high-resolution breast cancer dataset. 

f. GO enrichment analysis of stromal vascular regions, indicating enrichment in immune-related and 
metabolic processes. 
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