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Abstract

Background: In omics data integration studies, it is common, for a variety of reasons, for some individuals to not be
present in all data tables. Missing row values are challenging to deal with because most statistical methods cannot be
directly applied to incomplete datasets. To overcome this issue, we propose a multiple imputation (MI) approach in a
multivariate framework. In this study, we focus on multiple factor analysis (MFA) as a tool to compare and integrate
multiple layers of information. MI involves filling the missing rows with plausible values, resulting inM completed
datasets. MFA is then applied to each completed dataset to produceM different configurations (the matrices of
coordinates of individuals). Finally, theM configurations are combined to yield a single consensus solution.

Results: We assessed the performance of our method, named MI-MFA, on two real omics datasets. Incomplete
artificial datasets with different patterns of missingness were created from these data. The MI-MFA results were
compared with two other approaches i.e., regularized iterative MFA (RI-MFA) andmean variable imputation (MVI-MFA).
For each configuration resulting from these three strategies, the suitability of the solution was determined against the
true MFA configuration obtained from the original data and a comprehensive graphical comparison showing how the
MI-, RI- or MVI-MFA configurations diverge from the true configuration was produced. Two approaches i.e., confidence
ellipses and convex hulls, to visualize and assess the uncertainty due to missing values were also described. We
showed how the areas of ellipses and convex hulls increased with the number of missing individuals. A free and
easy-to-use code was proposed to implement the MI-MFA method in the R statistical environment.

Conclusions: We believe that MI-MFA provides a useful and attractive method for estimating the coordinates of
individuals on the first MFA components despite missing rows. MI-MFA configurations were close to the true
configuration even when many individuals were missing in several data tables. This method takes into account the
uncertainty of MI-MFA configurations induced by the missing rows, thereby allowing the reliability of the results to be
evaluated.
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Background
Due to the increase in available data information [1], inte-
grating large amounts of heterogeneous data is currently
one of the major challenges in systems biology. Biological
data integration provides scientists with a deeper insight
into complex biological processes. However, when dealing
with multiple data tables, the presence of missing values is
a common situation for a variety of reasons. In omics data
integration studies, it is common for some individuals to
not be present in all data tables, resulting in a specific
missing data pattern for multiple tables, as shown in Fig. 1.
For instance, in clinical studies, this can occur when a
patient forgets to fill out a form. It also can be attributable
to the study design if individual data are expensive or
difficult to measure.
Missing row values for a table of variables are challeng-

ing to handle because most statistical methods cannot be
directly applied to incomplete datasets. In the multiple
multivariate framework, several approaches have already
been proposed to deal with missing row values [2]. The
only methods widely available for analyzing incomplete
data focus on removal of themissing rows, either by ignor-
ing subjects with incomplete information or by replacing
the missing items with plausible values (e.g., means of
the observed cases). In multivariate statistical analysis,
case deletion procedures can be very inefficient, discard-
ing an unacceptably high proportion of subjects because
even if the per-table rates of missing rows are low, only
a few subjects may have complete data for all tables. In
addition, case-deletion procedures may bias the results
if the remaining subjects providing the complete data
are unrepresentative of the entire sample [3, 4]. On the
other hand, simple mean substitution can seriously dis-
tort the marginal and joint distribution of the variables [5]
and be an issue because many statistical methods rely on
estimation of the variance-covariance matrix.
Recently, two approaches have been proposed to deal

with missing row values in multiple multivariate analy-
sis. The first method, introduced by Van de Velden and
Bijmolt (2006) [6], was developed in the context of gener-
alized canonical correlation analysis. Its application in the
omics framework is often limited by the size, noise and
multicollinearity of the data [7, 8]. The second method,
described in Husson and Josse (2013) [9], was devel-
oped in the context of multiple factor analysis (MFA).
This method, designated regularized iterative MFA (RI-
MFA), was derived from a method available in principal
component analysis (PCA) and consists of alternating the
estimation of axes and components, and the estimation
of missing values [10, 11]. Here we consider an alterna-
tive method, involving a multiple imputation approach
adapted to the MFA framework, and called MI-MFA.
Multiple imputation (MI) was proposed by Rubin (1987)

[3] in order to estimate both the parameters of interest

and their variability in a data missingness framework. It
relies on the principle that a single value cannot reflect
the uncertainty of the estimation of a missing value. First,
MI is used to generate plausible synthetic data values,
called imputations, for missing values in the data. This
step results in a number (M) of imputed datasets in which
the missing data are replaced by random draws of plau-
sible values according to a specific statistical model. The
second step consists of analyzing each imputed dataset
using a statistical method that estimates the parameters
of interest. This step results in M analyses (instead of
just one) which differ only because the imputations dif-
fer. Finally, MI combines all the results together to obtain
a single consensus estimate, thereby combining variation
within and across the M imputed datasets. Under fairly
liberal conditions, this last step results in statistically valid
estimates that properly reflect sampling variability.
The major challenge in MI involves generating pos-

sible values for each missing observation. Statistically
advanced imputation procedures can therefore be used
for this. Two general approaches are often used for
imputing multivariate data: joint modeling (JM) [12]
and fully conditional specification (FCS), also known as
multivariate imputation by chained equations (MICE)
[13, 14]. JM involves specifying a multivariate distribu-
tion for the missing data and drawing imputations from
their conditional distributions by Markov chain Monte
Carlo (MCMC) techniques. FCS specifies the multivari-
ate imputationmodel on a variable-by-variable basis using
a set of conditional models, one for each incomplete
variable.
The key issue in JM is appropriate specification of

the multivariate distribution. A multivariate normal
model has often been used as it is computationally
tractable (because only the mean vector and the variance-
covariance matrix need to be estimated). This model
has even been used when some of the variables are not
Gaussian. However, the main weakness of JM is that it
can only be applied when the imputation involves a small
number of variables. This is not very common in omics
datasets that are often composed of tens of thousands
of variables, or more. FCS allows greater flexibility than
JM in creating multivariate models. Indeed, FCS can use
specialized imputation models by separately defining the
conditional densities for each variable, even if this can
require a considerable amount of work. When the num-
ber of variables is large, it is often impractical and too
computer-intensive to test and develop the best models
for each variable. As an alternative to the JM and FCS
approaches, we propose using the hot-deck imputation
approach [5]. This approach is a nonparametric imputa-
tion method that resolves the most important limitation
of the JM and FCS approaches as it can be applied to data
tables containing more than just a few variables.
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Fig. 1 Pattern of missingness. Pattern of missing values specific to multiple data tables with missing rows for some tables of variables. The colored
parts represent strata of the observed data, whereas the empty parts indicate missing data

When using the MI method, special attention must be
given to the process that gave rise to the missing data,
referred to as the missing data mechanism. Most meth-
ods for generating multiple imputations, fully-, semi- and
non-parametric methods, assume that the mechanism
responsible for missing data is ignorable [5, 15]. Briefly, if
the missing data mechanism is ignorable, then the anal-
ysis can focus on the observed values rather that also
having to model the process that resulted in certain val-
ues being observed and certain values being missing. If
the assumption of an ignorable missing-data mechanism
is valid, then statistical methods that rely on that assump-
tion can be expected to produce results with minimal bias.
One way that the missing-data mechanism can be viewed
as ignorable is if the missing data are missing completely
at random (MCAR). For data to be MCAR, there must
not be any systematic differences between the cases that
have missing items and the cases that are fully observed.
In microarray experiments, technical failure, low signal-
to-noise ratio and measurement errors can for instance
be considered as sources of MCAR patterns. The missing-
data mechanism can also be viewed as ignorable under the
less restrictive missing at random (MAR) scenario, which
allows missingness to depend on observed variables but
not on unobserved variables. Late-stage cancer patients,
as compared to early-stage cancer patients, unfortunately
have more chance of dropping out of follow-up studies,
which may result in a MAR pattern in a clinical data
table. When the ignorability assumption does not hold,
the imputation needs to be drawn from the posterior

distribution of the missing data given the complete data
and the missingness mechanism. Non-ignorable miss-
ing data occurs frequently in mass-spectrometry-based
experiments. Measures too close to the limit of detection
of the instrument are censored, resulting in a higher rate
of missing values. The probability of being missing is, in
this particular case, directly dependent on the intensity
value. In this paper, we decided to focus on models with
ignorable missing-data mechanisms.

Methods
Mathematical basis of multiple factor analysis (MFA)
MFA [16] is devoted to the simultaneous exploration
of multiple data tables where the same individuals are
described by several tables of variables. In MFA, the num-
ber and the type of variables (quantitative or categorical)
may vary from one table to another, but within each table
the nature of the variables is the same. Here we focus
on quantitative variables. The aims of MFA are similar to
those of PCA, namely to study the similarities between
individuals from a multidimensional point of view, to ana-
lyze the relationships between variables and characterize
individuals based on these relationships. However, beyond
these conventional uses, MFA can also be used to study
the links between tables of variables and to compare the
information contributed by each table.
MFA analyzes a set of J data tables K1, . . . ,KJ , where

each Kj corresponds to a table of quantitative variables
measured on the same I individuals (for a schematic
overview of MFA see Additional file 1: Figure S1). The
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core of MFA is a PCA in which weights are assigned
to variables. More formally, the matrix of variance-
covariance associated with each data table Kj is decom-
posed by PCA and its largest eigenvalue λ

j
1 is derived.

Then, each variable belonging to Kj is weighted by 1/
√

λ
j
1.

Finally, a global PCA is performed on the merged and
weighted data table K =[K1, . . . ,KJ ] to obtain the con-
figuration F (the scores matrix or principal components).
The main reason for the weighting step is to remove from
each table all information related to its own dimension-
ality or variance. Therefore, no single table can dominate
the first dimension of the global analysis.
MFA provides the same graphical representations as

PCA (i.e., representation of individuals and variables) but
also, due to the table structure, specific representations
such as the table representation and the superimposed
representation are available [16].

Themultiple imputation multiple factor analysis approach
(MI-MFA)
To deal with multiple tables with missing rows, we pro-
pose the MI-MFA approach, a multiple imputation (MI)
adapted to the framework ofMFA. The aim of ourmethod
is not to get the best possible estimations of the missing
values, but to replace them with plausible values in order
to provide estimates of the MFA configurations. Accord-
ing to MI methodology, the MI-MFA approach is carried
out by performing the following three steps:

1. Imputation: generate M different imputed datasets
K (1), . . . ,K (m), . . . ,K (M) of K .

2. MFA analysis: perform an MFA on each K (m)

imputed dataset leading to M different
configurations F1, . . . ,Fm, . . . ,FM .

3. Combination: find a consensus configuration
between all F1, . . . ,FM configurations.

These steps are outlined in Fig. 2 and described in detail
in the following sections.

Generating imputed data: multiple hot-deck imputation
Hot-deck imputation involves replacing missing values of
one or more variables with available values from a simi-
lar unit [17]. The observation from which these available
values are taken for imputation is called the donor and
the observation with the missing value, which receives
the donor’s value, is the recipient. The donor can be ran-
domly selected from a set of potential donors, called the
donor pool. Selection of a suitable donor pool is not an
easy task and is beyond the scope of this article [18, 19].
The general principle is to choose donor units that are
as close as possible to the recipient with respect to some
affinity score. Affinity is defined in terms of the degree to

which each potential donor matches the recipient’s val-
ues across all variables other than the one being imputed.
Intuitively, in the framework of stratified multiple omics
tables, the donor pool can be formed of available individu-
als belonging to the same stratum (e.g. cancerous cell line,
treatment, etc.) and the same omics table as the recipient.
Multiple hot decking differs from other forms of hot

decking by using several donors for a single recipient
[20]. Multiple hot-deck imputation proceeds as follows.
Let K =[K1, . . . ,KJ ] be the merged data table containing
missing rows with strata s = 1, . . . , S, then carry out the
following steps (see Fig. 2, hot-deck imputation step):

Step 1. Create donor pools by taking donors belonging
to the same stratum s and the same table Kj as the
recipient. Recipients within the same stratum have
the same donor pool. Suppose always that there is a
large enough number of donors for recipients in each
stratum.

Step 2. For each recipient in Kj, impute the missing indi-
vidual by drawing randomly with replacement a
donor from the corresponding donor pool. Repeat
this procedure until all missing individuals in the J
tables have been imputed.

Step 3. Repeat Step 2 until M different imputed datasets
K (1), . . . ,K (M) of K are obtained.

By conducting the imputations in this way, it is rea-
sonable to assume that the within-unit between-variables
multivariate relationships are preserved.

The combination procedure: the STATISmethod
The question that arises after using MI in an MFA
framework is how should all the configurations result-
ing from the analyses be combined to obtain a sin-
gle unique estimate of the consensus configuration?
While averaging is an appropriate combination proce-
dure in many other statistical techniques, it is not rec-
ommended for MFA due to possible reflection, dilation
or rotation of the different configurations with respect
to each other [21]. Here we consider an alterna-
tive approach by implementing the STATIS method
which provides a compromise configuration balancing all
configurations.
The STATIS method [22] (which stands for Struc-

turation des Tableaux à Trois Indices de la Statistique
in French) is a generalization of PCA used to simul-
taneously study several tables of variables collected on
the same individuals. The goal of this method is to
analyze the structure of the individual tables (i.e., the
relation between the individual tables) and to derive
from this structure an optimal set of weights for com-
puting a common configuration of the observations.
The solution obtained, called the compromise, is the
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Fig. 2 Overview of our MI-MFA approach to handling missing rows in multi-omics data integration. The top part of the graphic indicates that analysis
starts with observed, incomplete data tables K . In a second step, multiple imputation is performed using the hot-deck imputation approach:M
imputed versions K (1) , . . . ,K (M) of K are obtained by replacing the missing values by plausible data values. These plausible values are drawn from
donor pools. The imputed sets are identical for the non-missing data entries, but differ in the imputed values. The third step is to estimate the
configuration matrix Fm for each imputed dataset K (m) using MFA. The estimated configurations differ from each other because their input data
differ. The last step is to combine theM estimated configurations F1, . . . ,FM into a compromise configuration Fc using the STATIS method
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configuration agrees the most with all other configura-
tions. An overview of the STATIS method is presented in
Additional file 1: Figure S2.
STATIS analyzes a set of N tables X1, . . . ,XN , where

each Xn is a table of quantitative variables measured on
the same individuals. The first stage of STATIS consists of
calculating a matrix of cross-products between individu-
als for each tableWn = XnXT

n (AT means the transpose of
a vector or a matrix A) reflecting the similarities between
individuals within this table. The use of matrices Wn
instead of Xn simplifies the computation because it obvi-
ates the determination of rotations when matching the
Xn. The basic idea in STATIS is then to find a compro-
mise spaceWc = ∑N

n=1 αnWn that globally balances these
cross-product matrices by choosing a suitable optimal set
of weights α1, . . . ,αN . These weights are obtained from
the PCA of the matrix R whose generic term Rjk gives the
cosine between tables (also known as the RV-coefficient
[23]) defined as:

Rjk = trace(WT
j Wk)√

trace(WT
j Wj) · trace(WT

k Wk)
,

where the trace is the sum of the main diagonal elements
of a square matrix. The first eigenvector obtained from
the PCA of R represents the “agreement between tables”.
Its elements are normalized in such a way that their sum
is equal to 1 and used as weights αn in order to define
Wc. Tables with larger values of αn are more similar to the
other tables and therefore will have a larger weight, while
the weight of the “outlier tables” will be closer to zero with
respect to the other weights. The principal components
from the PCA ofWc then gives the coordinates of the indi-
viduals in the compromise space, called the compromise
configuration.

Implementation of MI-MFA
The MI-MFA algorithm can be summarized as follows
(see Fig. 2):

Step 0. Start with an observed, incomplete dataset K .
Define the number of imputationsM and the dimen-
sionality d of the compromise configuration.

Step 1. Perform multiple hot-deck imputation. For m =
1, . . . ,M:

• Obtain an imputed version K (m) of K , such
that, K (m) �= K (m′) form �= m′. The imputed
datasets are identical for the non-missing data
entries, but differ for the imputed values. The
imputed version of the data is obtained by using
the hot-deck imputation approach.

• Perform an MFA using d components on the
imputed dataset K (m) to obtain the
configuration Fm.

Step 2. Perform a STATIS on the set of configurations
F1, . . . ,FM to obtain Fc, the compromise configura-
tion.

Note that the number of dimensions d used in the algo-
rithm has to be chosen a priori. However, the number of
dimensions does not affect the estimation of the imputed
values and the estimation of the compromise configura-
tion.Moreover, for givenK (1), . . . ,K (M) imputed datasets,
solutions provided by the algorithms are nested (the solu-
tion with d dimensions is included in the solution with
d+1 dimensions). Since the core ofMI-MFA is a weighted
PCA, the strategies suggested to choose the number of
components in PCA can be adapted to MI-MFA, but
work needs to be done to validate the quality of these
extensions.

Howmany imputations?
When using MI, one of the uncertainties concerns the
number M of imputed datasets needed to obtain satis-
factory results. The number of imputed datasets in MI
depends to a large extent on the proportion of missing
data. The greater the missingness, the larger the number
of imputations needed to obtain stable results. However,
in multiple hot-deck imputation, the number of imputed
datasets is limited by the size of the donor pools. In any
case, the total number of possible imputations Mtotal can
be calculated before applying the imputation approach
(see Additional file 2). IfMtotal is small (Mtotal ≤ 50), then
M = Mtotal can be used in MI-MFA. The appropriate
number of imputations can be informally determined by
carrying out MI-MFA on N replicate sets of Ml imputa-
tions for l = 0, 1, 2, . . . , with M0 < M1 < M2 < · · · <

Mtotal, until the estimate compromise configurations are
stabilized. More precisely, this approach can be carried
out by applying the following steps:

Step 0. Start with an observed, incomplete dataset K .
Define the number of imputations Ml with M0 <

M1 < M2 < · · · < Mtotal and the number N of
replicate sets ofMl imputations.

Step 1. Create collections IMl
n , n = 1, . . . ,N , each one

containing Ml different imputed datasets of K , such
that, IMl

n �= IMl
n′ , for n �= n′ and IMl−1

n ⊂ IMl
n for

M0 < M1 < M2 < · · · < Mtotal.
Step 2. For n = 1, . . . ,N , perform anMI-MFA using IM0

n ,
to obtain N different compromise configurations
FcM0

1 , . . . ,FcM0
N .

Step 3. Let l = 1.
For n = 1, . . . ,N ,

• perform an MI-MFA using the collection IMl
n ,

to obtain a compromise configuration FcMl
n ;
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• calculate r ln = r(FcMl
n , Fc

Ml−1
n ), a measure of the

distance or correlation between configurations
(for example the RV coefficient [23]).

Step 4. Calculate r l = 1
N

∑N
n=1 r ln (or σ(r l) the standard

error of r l).
Step 5. Repeat steps 3 to 4 for l = 2, 3, . . . until the differ-

ences between two subsequent r l (or σ(r l)) become
smaller than a certain convergence criterion.

Uncertainty of MI-MFA solutions
In anMI-MFA framework, after estimating the configura-
tions from the imputed datasets, a new source of variabil-
ity due to missing values can be taken into account. Here
we describe two approaches to visualize the uncertainty
of the estimated MFA configurations attributable to miss-
ing row values. First, an individual plot for all estimated
MFA configurations is constructed. The individual plot is
obtained by projecting each estimatedMFA configuration
onto the compromise configuration (named the trajecto-
ries by Lavit [22]). Each individual is represented by M
points, each corresponding to one of theMMFA configu-
rations. Confidence ellipses and convex hulls can then be
constructed for the M configurations for each individual.
The computed convex hull results in a polygon contain-
ing all M solutions. All individuals have confidence areas,
even those without missing values. Indeed, even if only
the estimation of missing values is the only change, this
will have a possible impact on all MFA parameters. There-
fore, the area of such an ellipse (or convex hull) provides
an insight into the uncertainty of the estimated configu-
ration. The larger the area of an ellipse (convex hull), the
more uncertain the exact location of the individual. Thus,
when the area of an ellipse is large, the scientist should
remain really careful regarding its interpretation.

Performance of the method
We conducted two case studies to assess the performance
of our method. Instead of using theoretical distributions
to generate simulated data, our studies were based on
two real datasets, denoted as the original datasets. Subse-
quently, specific patterns of missingness were created in
these datasets as illustrated in Fig. 1, resulting in what we
called the incomplete datasets. This approach was used
in order to more closely mirror situations that may occur
in the omics context. Next, missing row values were esti-
mated and the resulting complete datasets were referred
to the imputed datasets.
We then compared our MI-MFA method to the RI-

MFA approach [9] and themean variable imputationMFA
(MVI-MFA) method, in which the missing values are sim-
ply replaced by the mean of each variable after which
an MFA is performed on the imputed dataset. This lat-
ter approach was considered as the common base for

comparing the MI-MFA and RI-MFA methods. For each
configuration obtained using MI-, RI- and MVI-MFA,
the similarity between the configuration solution and the
true configuration (based on an MFA using the original
dataset) was assessed from the RV coefficient [23]. The
RV coefficient, which ranges from zero to one, can be
interpreted as a correlation coefficient between twomatri-
ces, which allows the relative positions of objects to be
compared from one configuration to another.
We also provide comprehensive graphical comparisons

of the true vs. the MI-, RI- or MVI- MFA configurations.
The individuals from both configurations are drawn in a
same plot and connected by an arrow, the length of which
indicates the divergence between the two configurations.

Implementation of the analyses
All analyses were performed using the R computing
environment [24]. MFA was performed using the MFA
function of the FactoMineR R package [25]. The statis
function of the ade4 R package [26] was used to determine
the compromise configuration. The RI-MFA method is
implemented in the imputeMFA function available in
the missMDA R package [27]. Note that the number
of components ncp used to predict the missing entries
in the imputeMFA function has to be chosen a pri-
ori. This choice is crucial and difficult [9]. As the
true configuration was known in our case, the num-
ber of components ncp was chosen to minimize the
RV coefficient between the true and the imputeMFA
configurations.
The appropriateness of the results from MI-, RI- and

MVI- MFA was then determined by comparing the con-
figurations resulting from these three strategies with the
true MFA configuration. Due to a possible lack of align-
ment (order change, sign reversal of the components and
rotation) between two configurations (the true vs. theMI-,
RI- or MVI- MFA configuration), it was necessary to align
them before being compared. Ordinary Procrustes Anal-
ysis [28] was used to align these configurations prior to
their comparison.

Datasets
Liver toxicity
The datasets originated from a liver toxicity study [29] in
which 64male rats of the inbred Fisher F344/N strain were
exposed to toxic doses of acetaminophen (paracetamol)
in a controlled experiment. Necropsies were performed 6,
18, 24 and 48 h after exposure and mRNA was extracted.
The data consisted of the expression of 3,116 genes and 10
clinical variables considered to be markers of liver injury.
The 64 subjects (rats) were cross-classified in eight strata
(or treatments) according to two factors:

• exposure time: 6, 18, 24 and 48 h;
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• toxic doses of acetaminophen: high (1500 mg/kg or
2000 mg/kg) or low (50 mg/kg or 150 mg/kg).

Eight subjects per stratum were included. These datasets
were downloaded from themixOmics R package [30].

NCI-60 data
The NCI-60 dataset contained transcriptomic [31] and
proteomic [32] tables for a collection of 60 cell lines
from the National Cancer Institute (NCI-60). The NCI-
60 panel included cell lines derived from various cancer
types: colon (7 cell lines), renal (8), ovarian (6), breast (8),
prostate (2), lung (9) and central nervous system (6), as
well as leukemia (6) and melanoma (8). The gene expres-
sion profiles used here were generated using an Agilent
platform [31] and downloaded from Cellminer [33]. Data
were log2-transformed. To facilitate data interpretation
and computation, the transcriptomic data were filtered
to exclude probes that did not map to an official HUGO
gene symbol and to retain only the probe with the high-
est average value when multiple probes mapped to the
same gene, as previously described in [34]. Gene invari-
ants across all 60 cell lines, corresponding to genes with-
out any effect between cancer types, were also removed.
Filtering produced a dataset of 1,433 genes. The NCI-
60 proteome table was also downloaded from Cellminer
[33]. Proteomic data were obtained using high-density
reverse-phase lysate microarrays [32]. Data were log2-
transformed and protein abundance levels were available
for 162 proteins [32].

Results

Liver toxicity data analysis
A specific pattern of missing values was created as illus-
trated in Fig. 1. To obtain an incomplete dataset, three
individuals per stratum were randomly removed from the
transcriptomic table. For this specific pattern, there were
3 × 8 = 24 missing individuals. MI-MFA was then per-
formed on the incomplete dataset using M = 30 imputed
datasets. RI-MFA, and MVI-MFA were also performed.
Figure 3 shows the divergence of the MI-, RI- and MVI-
MFA configurations from the true configuration. As can
be seen, the configuration obtained with MI-MFA was
very close to the true configuration (Fig. 3, top right).
This result was confirmed by the high RV coefficient (0.96
for the first two dimensions). The configurations obtained
with RI-MFA andMVI-MFAwere more distorted and less
close to the true configuration with RV coefficients of 0.77
and 0.84 respectively (Fig. 3, bottom).
The number M of imputed datasets in MI-MFA for

the above incomplete liver toxicity data was determined
as described in the How many imputations section. Col-
lections of size N = 30 were generated for each of
the following numbers of imputations: Ml = 10 l, for

l = 1, . . . , 10. The stability of the estimated MI-MFA
configurations was then determined by calculating the
RV coefficient between the configurations obtained using
Ml and Ml+1 imputations (see Fig. 4, left). As the true
configuration was known, we also described the stability
of the estimated MI-MFA configurations by calculating
the RV coefficients between the true configuration and
those obtained using Ml imputations (see Fig. 4, right).
Although the missing information is substantial, Fig. 4
shows that only a slight increase in precision was obtained
by using more than 30 imputations.
MI-MFA was also applied to different scenarios of miss-

ingness. First, MFA was performed on the original dataset
to obtain the true configuration. Secondly, individuals
were randomly removed from each stratum in the original
transcriptomic table. For this, three scenarios were con-
sidered for the number of missing rows (i.e. low, medium
and high), in which there were respectively one, two and
three missing rows per stratum. The total number of
missing rows per scenario was therefore 8, 16 and 24
respectively. Thirdly, for each missingness scenario, 50
incomplete datasets were randomly chosen for analysis.
As previously, MI-MFA was performed on each incom-

plete dataset using M = 30 imputed datasets. RI-MFA,
as well as MVI-MFA, were also computed. The RV
coefficients between the true configuration and the con-
figurations obtained using each method (for the first two
dimensions) were then calculated. Figure 5 shows the
mean of the RV coefficients for the 50 two-dimensional
configurations as a function of the missingness scenario
for each method. Note that the average results using MI-
MFA were always better than with RI-MFA or MVI-MFA,
whatever the scenario. The RV coefficients between the
true configuration and the MI-MFA configuration were
close to one and remained satisfactory even when the
number of missing row values was high, and the results
obtained with the RI-MFA and MVI-MFA decreased
significantly.
The performance of the MI-MFA procedure was then

further investigated for more complex scenarios of miss-
ingness. More precisely, missing row values were inserted
into each stratum (e.g. high-6h treatment) of the original
dataset (including both transcriptomic and clinical tables)
according to the scenarios illustrated in Table 1.
Twenty incomplete datasets were then selected at ran-

dom from each stratum (treatment) and each scenario. All
analyses (MI-MFA, RI-MFA and MVI-MFA) and the cal-
culation of the RV coefficient were performed in the same
way as previously described. Figure 6 (and Additional
file 1: Figure S3) shows the means of RV coefficients for
the two-dimensional configurations as a function of the
scenarios for each method.
For almost all the scenarios, the average results obtained

with MI-MFA were better than with the other methods.
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Fig. 3 Comparison of MFA configurations for the liver toxicity data analysis. Representation of the individuals on the two-dimensional configuration
obtained by performing MFA on the complete dataset (top left) and, MI-MFA (top right), RI-MFA (bottom left) and MVI-MFA (bottom right) versus the
true configuration. Dots and arrows represent the projected coordinates from the true configuration and the imputation MFA method, respectively.
The length of the line joining dots and arrows is proportional to the divergence between the projected coordinates. The color of each individual
(dot-arrow) reflects the treatment (see legend). Imputed individuals from the transcriptomic dataset are represented by empty circles

Fig. 4 Stability of the estimated MI-MFA configurations using different numbers of imputations. MI-MFA configurations were obtained for the
following numbers of imputations:Ml = 10 l, for l = 1, . . . , 10. Left: RV coefficient between configurations obtained by MI-MFA withMl andMl+1

imputations. Right: RV coefficient between the configuration obtained by MFA on the complete dataset and MI-MFA on the incomplete dataset
withMl imputations. The values shown are the mean RV coefficients for the N = 30 two-dimensional configurations as a function of the number of
imputations. Error bars represent the standard deviation of the RV coefficients
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Fig. 5 Performance on liver toxicity data according to the number of missing rows. RV coefficients between the configuration obtained by MFA on
the complete dataset and either MI-MFA (red line), RI-MFA (green line) or MVI-MFA (blue line) on the incomplete dataset. The values shown are the
mean RV coefficients for the 50 two-dimensional configurations for each missingness scenario: low, medium and high (see text for more details).
Error bars represent the standard deviation of the RV coefficients

As the number of missing row values increased (Fig. 6
and Additional file 1: Figure S3), the results obtained with
the RI-MFA and MVI-MFA algorithms worsened rapidly,
especially when the dimension increased, whereas the
results with the MI-MFA approach were still satisfactory.

NCI-60 data analysis
To confirm the performance of our method, MI-MFA
was also performed on the NCI-60 dataset. A pattern of

Table 1 Scenarios of missingness for the liver toxicity data
analysis

Number of missing rows

Scenario Transcriptome Clinical # cases

1 1 1 56

2 2 1 168

3 1 2 168

4 3 1 280

5 2 2 420

6 3 2 560

7 4 1 280

Number of missing rows inserted in each stratum of the original dataset, including
both transcriptomic and clinical data, for incomplete data creation. The # cases
indicate the number of possibilities of incomplete cases per stratum

missing values was created as illustrated in Table 2. One
or two individuals were removed per table for all types
of cancer cell lines, except for the prostate cancer line
(which only had two individuals). This specific pattern
would reflect a study in which a lot of rows were missing.
To compare the MFA configurations, one incomplete

dataset was chosen from a large range of possibilities of
incomplete datasets (6 × 1014) according to the scenario
of missingness illustrated in Table 2. We then computed
our MI-MFA method on this incomplete dataset by using
M = 50 imputed datasets. As with the liver toxicity
data, RI-MFA and MVI-MFA were also performed. We
chose M = 50 in order to achieve stable results. Figure 7
shows the divergence of the MI-, RI- and MVI-MFA con-
figurations from the true configuration. For this specific
example, the MI-MFA configuration was closest to the
true configuration (Fig. 7, top-right) with a RV coefficient
of 0.97, whereas the configurations obtained with RI-MFA
and MVI-MFA were more distorted with RV coefficients
of 0.94 and 0.87 respectively (Fig. 7, bottom).
To broaden the scope of assessment to more than a sin-

gle case, 100 possible cases of incomplete datasets were
chosen at random among the 6×1014 possibilities accord-
ing to the specific missingness scenario shown in Table 2.
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Fig. 6 Performance on liver toxicity data with missing individuals in the high-dose treatment. Average RV coefficient between the configuration
obtained by MFA on the complete dataset and either MI-MFA (red line), RI-MFA (green line) or MVI-MFA (blue line) on the incomplete dataset. Results
are given for all of the first three two-dimensional possible configurations as a function of the scenarios presented in Table 1. The discrete RV values
are joined by lines for ease of understanding. The performance of the different methods on the liver toxicity data with missing individuals in the
low-dose treatment are presented in Additional file 1: Figure S3

Table 2 Scenarios of missingness for the NCI-60 data analysis

Number of missing rows

Cell line Transcriptome Proteome # cases

Breast 1 0 5

CNS 1 1 60

Colon 2 0 42

Lung 2 2 3024

Leukemia 1 1 60

Melanoma 2 2 5040

Ovarian 1 1 84

Prostate 0 0 //

Renal 2 1 504

Number of missing rows inserted in each stratum (cell line type) of the original
dataset, including both transcriptomic and proteomic data, for incomplete data
creation. The # cases indicate the number of possibilities of incomplete cases per
stratum

For each incomplete dataset, MI-MFA was performed
using M = 50 imputed datasets. RI-MFA and MVI-MFA
were also computed. Figure 8 shows the RV coefficient
for the two-dimensional configurations as a function of
each case. The results obtained with MI-MFA and RI-
MFA were similar, with RV coefficients of approx. 0.97,
whereas the results obtained with MVI-MFA were much
further from the true configuration. Thus, even with com-
plex patterns of missingness, the MI-MFA approach still
provided satisfactory results, as did RI-MFA in this case.
However, unlike RI-MFA, MI-MFA took into account the
variability of missing row values, as demonstrated in the
following section.

Why is it essential to evaluate uncertainty?
This question was addressed through an example using
the NCI-60 dataset. A specific pattern of missing values
was created. The missing rows were randomly introduced
for four melanoma and two leukemia cancer lines in
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Fig. 7 Comparison of MFA configurations for NCI-60 data analysis. Representation of the individuals on the two-dimensional configuration obtained
by MFA on the complete dataset (top left) and, MI-MFA (top right), RI-MFA (bottom left) and MVI-MFA (bottom right) versus the true configuration. Dots
and arrows represent the projected coordinates from the true configuration and the imputation MFA method respectively. The length of the line
joining dots and arrows is proportional to the divergence between the projected coordinates. Each individual (dot-arrow) is colored according to the
cancer type (see legend). Imputed individuals from transcriptomic and proteomic data are represented by empty circles and diamonds, respectively

the transcriptomic table. The six inserted missing rows
represented 10 % of the total number of individuals. The
missing rows were inserted for specific groups of indi-
viduals that contributed substantially to the construction
of the first two dimensions of the MFA on the original
dataset (see Fig. 7, top left). MI-MFA was performed on
the incomplete dataset using M = 50 imputed datasets.
Confidence ellipses and convex hulls were then computed
from the 50 configurations projected on the compromise
configuration. Figure 9 (top) shows the uncertainty due
to missing rows around individuals on the compromise
configuration. The use of different imputed individuals
in each dataset implied slightly different configurations.
Consequently, since the configurations changed, the posi-
tions of all the individuals also changed and thus all
the individuals had confidence areas, even individuals

not being imputed (Fig. 9, individuals represented by
filled circles). However, the greatest uncertainty occurred
around the imputed individuals (Fig. 9, empty circles).
In order to highlight the importance of the uncer-

tainty of MI-MFA configurations induced by missing
rows, additional rows were removed from the transcrip-
tomic table resulting in 30 % missing rows. We then
carried out MI-MFA on the incomplete dataset using
M = 50 imputed datasets. Figure 9 (bottom) shows
the impact of the missing rows around individuals on
the compromise configuration. As expected, the size of
the ellipses (and convex hulls) of the additional miss-
ing individuals was increased. However, the size of the
ellipses and convex hulls was not excessive even when
30 % of the rows were missing from the transcriptomic
table.
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Fig. 8 Performance on NCI-60 data. RV coefficient between the configuration obtained by MFA on the complete dataset and either MI-MFA
(red line), RI-MFA (green line) or MVI-MFA (blue line) on the incomplete dataset. The results shown are the mean RV coefficients for the 50
two-dimensional configurations as a function of the cases according to the scenario represented in Table 2. The discrete RV values are joined by
lines for ease of understanding

Discussion
In the present paper, we propose a MI approach to handle
missing row values in an MFA framework and therefore
resolve one of the major issues associated with multiple
omics data tables. The proposed method, which we called
MI-MFA, provides point estimates of MFA configurations
with a notion of uncertainty due to themissing values. The
aim of ourmethod was not to obtain the best possible esti-
mates for the missing values, but to replace them so as to
be able to estimate MFA configurations.
The MI-MFA method generates M imputed datasets

from an MFA model, where multiple hot-deck imputa-
tion is used to fill in the missing values. The hot-deck
approach resolves the most important limitation of other
model-based techniques (such as JM and FCS) in that
it can be applied to large datasets. Furthermore, other
major advantages of this method are that: (1) it is not
necessary to define an explicit model for the distribu-
tion of the missing values, (2) imputations tend to be
realistic since they are based on observed values, and
(3) it is flexible in the sense that it can preserve com-
plex within-unit and between-variable associations. How-
ever, a weakness is that it requires good donor-recipient
matches that reflect the available covariate information.
Finding such good matches is not an easy task and is
beyond the scope of this article [18, 19]. In an ideal
framework of stratified multiple omics data tables, donor

pools would consist of the available individuals belonging
to the same stratum and the same omics table as the
recipient. A potential shortcoming of the method is that
the donor pools might contain too few donor obser-
vations and thus introduce a risk of bias on the MFA
results. Likewise, if the overall sample size is very small,
then typically there are also too few potential donors.
However, all imputation techniques are challenged by
small sample sizes since these reduce the availability
of information required to create suitable conditional
statements [19].
An important aspect of our strategy is the choice of the

numberM of imputed datasets. As shown in the two case
studies, we think that this number should be a good com-
promise between the need to obtain stable estimates and
to avoid computation bottlenecks.
The STATIS method was proposed to combine the

results of MI-MFA. As the core of MFA is a PCA,
combining the results from MFA is the same as com-
bining the results from PCA. Several procedures have
previously been proposed to combine results from PCA
such as the Mean Varimax Method (MVM) or Mean
Correlation Matrix (MCM) approaches (as discussed in
[35]). However, Van Ginkel and Kroonenberg [10, 35]
demonstrated that Generalized Procrustes Analysis
(GPA) was more suited to this purpose. GPA fits the
PCA configurations obtained from the imputed datasets
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Fig. 9 Visualization of the uncertainty induced by the missing individuals. Projection of the 50 obtained configurations on the compromise
configuration from MI-MFA on the incomplete data with 10 % missing rows (top) and 30 %missing rows (bottom). The 95 % confidence ellipses (left)
and convex hulls (right) show the uncertainty for each individual (dots). Empty circles represent imputed individuals from the transcriptomic data.
For ease of understanding, not all individuals for the 50 configurations obtained were plotted

to a single fixed reference configuration to produce the
final solution, the centroid configuration (the mean of
all transformed solutions). One advantage of STATIS, as
compared to MVM and MCM, is that it automatically
corrects for possible reflection, dilation or rotation of
the different configurations. Additionally, and contrary
to the GPA procedure, the STATIS algorithm is very
computer-time efficient since it is a non-iterative process.
Another appealing feature of STATIS is its robust prop-
erties. As this algorithm includes weights proportional
to the agreement between configurations, the results
do not seem to be affected by the presence of large
outliers.
Two approaches have been proposed to visualize the

uncertainty of the estimated MFA configurations due
to missing row values: confidence ellipses and convex
hulls. These graphical representations provide scientists

with considerable guidance when interpreting the sig-
nificance of MFA results in a missing data framework.
Indeed, ellipses and convex hull areas offer great assis-
tance by either supporting the MFA results if they are
small or suggesting that caution be exercised other-
wise. It should be noted that RI-MFA (or MVI-MFA)
also provides a configuration of individuals whatever
the missingness pattern; however, there is no way of
knowing if the results obtained are plausible and if
the user can interpret the results without making any
mistakes.
We have illustrated our approach by applying it to

two real case studies using the liver toxicity and NCI-
60 datasets. Incomplete artificial datasets with differ-
ent patterns of missingness were created within these
datasets. The configurations resulting from MI-, RI- and
MVI-MFA were compared with the MFA configurations
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of the corresponding original population (the true
configuration). Performance of the methods was assessed
by considering the RV coefficient with respect to the true
configuration.
In the liver toxicity study, the performances of the meth-

ods were compared in two different missingness settings.
First the number of missing rows in each stratum of
the transcriptomic table was chosen to be low (1 row),
medium (2) or high (3). Secondly, seven scenarios were
created by inserting missing rows in the original dataset
which included both transcriptomic and clinical tables.
The overall results showed that MI-MFA clearly outper-
formed the RI-MFA and MVI-MFA approaches in nearly
all settings.
In the NCI-60 study, we illustrated the performance of

our method on complex patterns of missingness where
substantial numbers of rows were missing from both
tables of the NCI-60 dataset. As previously, this study
showed that MI-MFA clearly performed better thanMVI-
MFA. We also demonstrated that RI-MFA performed
better than MVI-MFA. The differences between MI-MFA
and RI-MFA were small, but on average slightly in favor
of our method. As the purpose of this study was also
to illustrate the uncertainty of MI-MFA configurations
induced by missing rows, we demonstrated how the areas
of the confidence ellipses and convex hulls got larger as
the number of missing rows increased.

Conclusion
We propose here a newmethod, MI-MFA, an extension of
MFA, designed to deal with multiple tables with missing
row values. MI-MFA is a useful and attractive method to
estimate the coordinates of individuals for MFA configu-
rations despite the missing rows. The study cases showed
that the other proposed methods either encountered seri-
ous problems or were unable to adequately assess the
accuracy due tomissing data. The configurations obtained
with our method were closer to the true configuration
even when a significant number of individuals were miss-
ing, and thus provided better results. Moreover, the uncer-
tainty due to the missing rows could be visualized on
the compromise configuration. The software for our MI-
MFA method is available in an easy-to-use code for the R
statistical environment.
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