ENVIRONMENTAL SCIENCES 275 SEMINAR

INTRICATE COUPLING OF CARBON, NITROGEN AND IRON REDOX CYCLING UNDERLYING THE BIOGEOCHEMICAL DYNAMICS OF N₂0

Dr. Scott D. Wankel

March 30, 2022 at 3 pm

103 Materials Science & Engineering Building

Join us at MSE 103

Over century long timescales, the climatic forcing of nitrous oxide (N_2O) dwarfs that of carbon dioxide. Although increasing atmospheric levels are linked to excess nitrogen loading and consequent formation via microbially mediated pathways, factors regulating the emission of N_2O to the atmosphere remain difficult to predict and the global N_2O budget remains poorly constrained. In large part, these challenges stem from the fact that a diverse number of N_2O production pathways may be at work, especially in environments hosting dynamic redox conditions - and thus disentangling their relative roles in regulating N₂O is challenging. As coastal ecosystems are especially subject to elevated nitrogen loading, we have been focusing investigations on better understanding the controls on N₂O production mechanisms in intertidal sediments using a variety of novel isotopic approaches. Surprisingly, initial findings have indicated that under elevated nitrate loading, increased emissions of N_2O are not mediated by direct bacterial activity, but instead appear to be largely catalyzed by fungal denitrification and/or abiotic reaction with reduced iron (chemodenitrification).

Expanding on these findings, results from lab experiments focused on nontraditional production pathways demonstrate high potential for cryptic cycling processes under dynamic redox oscillations and shed some new light on factors controlling kinetics, yields, and isotopic composition of product N_2O . As both fungal and chemodenitrification typically exhibit N_2O yields far greater than bacterial production, even small levels of their activity could produce disproportionately large amounts of N_2O , suggesting the possibility of their potentially substantial, yet widely overlooked, role especially in coastal ecosystem N_2O fluxes. Finally, these findings may help to explain the notoriously high variability of environmental N_2O fluxes, which may in part be driven by spatial and temporal heterogeneity in organic matter respiration by fungi and the redox cycling of iron.

